Конспект урока
Геометрия
7 класс
Урок № 33
Повторение.
Параллельные и перпендикулярные прямые
Перечень рассматриваемых вопросов:
- Взаимное расположение прямых на плоскости.
- Параллельные прямые.
- Аксиома параллельных прямых.
- Перпендикулярные прямые.
- Расстояние от точки до прямой, между параллельными прямыми.
Тезаурус:
Параллельные прямые – две прямые на плоскости называются параллельными, если они не пересекаются.
Перпендикулярные прямые – две прямые называются перпендикулярными, если при пересечении они образуют четыре прямых угла.
Основная литература:
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
Дополнительная литература:
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Взаимное расположение двух прямых на плоскости.
Вспомните, как могут располагаться на плоскости две прямые.
Параллельные прямые.
Две прямые на плоскости называются параллельными, если они не пересекаются.
Аксиома параллельных прямых: через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Углы, изображенные на рисунке:
Накрест лежащие: 3 и 5; 4 и 6.
Соответственные: 1 и 5; 2 и 6; 3 и 8; 4 и 7.
Односторонние: 3 и 6; 4 и 5.
Признаки и свойства параллельных прямых.
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
Если при пересечении двух прямых секущей сумма односторонних углов равна 180°, то прямые параллельны.
Это признаки параллельности прямых. Обратные теоремы верны и представляют свойства параллельных прямых.
Способ построения параллельных прямых:
Аксиома параллельных прямых.
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Следствия:
Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
Если две прямые параллельны третьей, то они параллельны.
Перпендикулярные прямые.
Если две прямые, пересекаясь, образуют четыре прямых угла, они называются перпендикулярными.
Прямые а и b на рисунке перпендикулярны: а ⏊ b.
Через каждую точку можно провести прямую, перпендикулярную данной и притом только одну.
Это можно сделать, пользуясь угольником или транспортиром.
Перпендикулярность и параллельность прямых.
Две прямые, перпендикулярные к третьей не пересекаются т. е параллельны между собой.
Отрезок АВ, перпендикулярный к прямой а, называют перпендикуляром. Точка В – основание перпендикуляра.
Из любой точки, не лежащей на данной прямой, можно опустить перпендикуляр на эту прямую и притом только один.
Длину перпендикуляра АВ называют расстоянием от точки А до прямой а.
Расстоянием между параллельными прямыми называют расстояние АВ от любой точки одной прямой до другой прямой.
Разбор заданий тренировочного модуля.
№ 1. Дано: a ║ b, ∠1 + ∠2 = 220°. Найдите: ∠3.
- Решение: ∠1 и ∠2 соответственные, по свойству параллельных прямых: ∠1 = ∠2 = 220°: 2 = 110°.
- ∠2 и ∠3 смежные, по свойству смежных углов: ∠2 + ∠3 = 180° значит, ∠3 = 180° – 110° = 70°.
Ответ: 70°.
№ 2. Докажите, что биссектрисы смежных углов перпендикулярны.
- Пусть ∠АОВ и ∠ВОС – смежные углы. ОК и ОР – их биссектрисы.
- ∠KOP = ∠КОВ + ∠ВОР. Поскольку ОК и ОВ – биссектрисы, то ∠КОВ = 1/2∠АОВ, ∠ВОР = 1/2∠ВОС по определению биссектрисы.
- Тогда ∠КОР = 1/2∠АОВ + 1/2∠ВОС = 1/2(∠АОВ + ∠ВОС) = 180° : 2 = 90°.
- Итак, ОК ⏊ ОР т. е. прямые перпендикулярны.
Что и требовалось доказать.