Урок 50. Нахождение целого по его части

Поделиться:
Конспект урока

Математика

5 класс

Урок № 50

Нахождение целого по его части

Перечень рассматриваемых вопросов:

  • обыкновенная дробь;
  • числитель, знаменатель обыкновенной дроби;
  • сократимая, несократимая дробь;
  • задачи на дроби.

Тезаурус

Дробь в математике – это число, состоящее из одной или нескольких равных частей (долей) единицы.

Правильные дроби – это дроби, в которых числитель меньше знаменателя.

Неправильные дроби – это дроби, в которых числитель равен или больше знаменателя.

Обязательная литература

  1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

«Без знания дробей никто не может быть сведущим в математике», – однажды сказал древнеримский философ Марк Туллий Цицерон. И трудно с ним не согласиться, ведь дроби в нашей жизни встречаются очень часто.

Убедимся в этом, решая задачи на нахождение целого по его части.

В окружающем нас мире очень часто приходится находить не только часть от чего-либо, но и, наоборот, целое по его части. Например, мы можем услышать в прогнозе погоды такую фразу «Сегодня выпало 20 миллиметров осадков, что составляет половину месячной нормы». А сколько тогда составляет месячная норма? Если половина нормы это 20 миллиметров, тогда норма в два раза больше, т. е. 40 миллиметров.

А теперь немного изменим условие задачи. Найдём всю месячную норму, если известно, что за день выпало 20 миллиметров, что составляет Урок 50. Нахождение целого по его части месячной нормы.

Для решения этой задачи воспользуемся следующими рассуждениями.

Будем считать, что месячная норма это Урок 50. Нахождение целого по его части . По условию, её Урок 50. Нахождение целого по его части равны 20 миллиметрам. Сначала найдём Урок 50. Нахождение целого по его части нормы, а потом и Урок 50. Нахождение целого по его части.

20 : 2 = 10 мм – одна треть нормы. 10 мм · 3 = 30 мм – три трети нормы.

Ответ: месячная норма равна 30 мм.

Итак, сформулируем правило нахождения целого по его части: если часть искомого целого выражена дробью, то чтобы найти целое, можно эту часть разделить на числитель дроби, а результат умножить на её знаменатель.

Урок 50. Нахождение целого по его части

Решим задачу.

Два путешественника отправились в поход, который длился несколько дней. В первый день они преодолели Урок 50. Нахождение целого по его части от всего маршрута. Во второй день они прошли Урок 50. Нахождение целого по его части от того, что прошли в первый день.

Какой путь должны преодолеть путешественники, если во второй день они прошли 20 км?

Решение.

Составим схему, на основе которой будем выполнять решение этой задачи.

Урок 50. Нахождение целого по его части

Нам известно, что 20 километров это четыре пятых маршрута, пройденного в первый день. Соответственно, найдём длину маршрута в первый день.

20 : 4 · 5 = 25 км – расстояние, пройденное за 1 день.

Теперь, зная, что 25 = Урок 50. Нахождение целого по его части от всего маршрута, найдём весь пройденный путешественниками путь: 25 : 5 · 13 = 65 км.

Ответ: весь путь равен 65 км.

Решим задачу. Младшей сестре исполнилось 9 лет, что составляет  Урок 50. Нахождение целого по его части от возраста её старшей сестры. А возраст старшей сестры составляет Урок 50. Нахождение целого по его части от возраста их матери. Сколько лет старшей сестре и матери?

Решение: для решения этой задачи составим следующую схему.

Урок 50. Нахождение целого по его части

По известному возрасту младшей сестры найдём возраст старшей.

9 : 3 · 5 =15 (лет) – возраст старшей из дочерей.

Теперь найдём возраст матери.

15 : 5 · 12 = 36 (лет) – возраст матери.

Ответ: 15 лет; 36 лет.

Тренировочные задания

№ 1. За один день бригада заасфальтировала 5 км дороги, что составило Урок 50. Нахождение целого по его части всей работы. Сколько километров должна заасфальтировать бригада?

Решение: для решения этой задачи нужно использовать правило нахождения части от целого: чтобы найти целое по части, нужно эту часть разделить на числитель дроби, а результат умножить на её знаменатель.

Т. е. 5 : 5 · 7 = 7 км

Ответ: 7 км.

№ 2. Первая сторона треугольника равна 12 см, что составляет Урок 50. Нахождение целого по его части от его периметра, другая составляет Урок 50. Нахождение целого по его части от первой стороны. Чему равна третья сторона треугольника?

Решение: для решения этой задачи сначала нужно вспомнить, что периметр – это сумма длин всех сторон треугольника, т. е. сумма длин трёх сторон.

Теперь найдём периметр, исходя из условия задачи.

1) 12 : 3 · 10 = 60 см – периметр.

12 : 2 · 3 = 18 см – вторая сторона.

Теперь от периметра отнимем сумму длин двух сторон и получим третью сторону.

40 — (18 + 12) = 10 см – третья сторона. Ответ: 10 см.