Конспект урока
Математика
5 класс
Урок № 14
Деление нацело
Перечень вопросов, рассматриваемых в теме:
— деление натуральных чисел;
— свойства деления натуральных чисел.
Тезаурус
Деление – это математическое действие, обратное умножению.
Делимое – это число, которое делят.
Делитель – это число, на которое делят.
Частное – результат деления.
Делить на нуль нельзя.
Любое натуральное число а делится на 1 и само на себя:
а : 1 = а, а : а = 1
Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.
Обязательная литература
- Никольский С. М. Математика: 5 класс. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. – М.: Просвещение, 2017. – 272 с.
- Потапов М. К. Математика. Книга для учителя. 5-6 классы. // М. К. Потапов, А. В. Шевкин. – М.: Просвещение, 2010.- 256 с.
Дополнительная литература
- Бурмистрова Т. А. Математика. Сборник рабочих программ. 5-6 классы. // Составитель Т. А. Бурмистрова – М.: Просвещение, 2014.- 80 с.
- Потапов М. К. Математика: дидактические материалы. 6 класс. // М. К. Потапов, А. В. Шевкин – М.: Просвещение, 2010.- 118 с.
- Чесноков А. С. Дидактические материалы по математике 5 класс. // А. С. Чесноков, К. И. Нешков. – М.: Академкнига, 2014.- 124 с.
Теоретический материал для самостоятельного изучения
Давайте вспомним, что нам уже известно об операции деления. Пусть у нас есть натуральные числа a и b, причём а больше b или равно b (a ≥ b). Говорят, что а делится на b нацело, если существует натуральное число с, при умножении которого на b получается а: a = b ∙ c.
Обычно слово «нацело» в этой фразе опускается. При этом записывают: a : b = с и называют а – делимым, b – делителем, с – частным.
Любое натуральное число а делится на 1 и само на себя:
а : 1 = а, а : а = 1
так как а ∙ 1 = а, 1 ∙ а = а.
Например, 14 делится на 1 и на 14.
14 : 1 = 14, 14 : 14 = 1
При делении ноля на любое натуральное число получается ноль: 0 : а = 0, потому что 0 ∙ а = 0.
Запомните: делить на нуль нельзя!
Любое натуральное число а делить на нуль нельзя, потому что не существует такого числа с, для которого выполнялось бы равенство а : 0 = с (так как с ∙ 0 = 0 ≠ а). Принято считать, что нуль на нуль делить нельзя.
Для деления чисел из двух и более цифр (знаков) применяют деление уголком.
Вспомним, как делить уголком, на примере.
Вычислим 392 : 28 = ?
Для начала запишем делимое и делитель уголком:
Начнём делить 392 на 28 следующим образом.
Во-первых, определим неполное частное. Для этого слева направо сравниваем цифры делимого и делителя.
Рассмотрим цифру 3. Она меньше 28 – значит, нужно взять ещё одну цифру из делимого. 39 больше 28, следовательно, это неполное частное.
Ставим точку в частном (под уголком делителя).
Посчитаем, сколько цифр осталось в делимом, после неполного частного. У нас после 39 стоит только одна цифра – 2. Значит, и в результат добавляем ещё одну точку.
Приступаем к делению: 28 помещается в 39 только один раз, поэтому ставим первой цифрой ответа единицу и вычитаем 28 из 39.
После вычитания в остатке получилось 11, это меньше, чем 28, поэтому к 11 дописываем 2.
112 делится на 28. Получаем 4. Записываем полученный результат второй цифрой в ответе.
В остатке получился нуль – значит, числа разделились нацело. Таким образом, 392 : 28 = 14.
Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.
Вычислим 50 : 25 = ?
Сначала одновременно умножим 50 и 25 на 2. Получим:
100 : 50 = 2.
Теперь разделим 50 и 25 на 5. Получим:
10 : 5 = 2.
В обоих случаях ответ оказался одинаковым. Значит, свойство частного верно.
Если каждое из натуральных чисел a и b делится на натуральное число с, то верно равенство:
(a+ b) : c = a : c + b : c.
Убедимся в правдивости данного свойства на примере.
Вычислим выражение: 124 : 4 + 36 : 4.
Рассмотрим два способа решения.
1 способ. Выполним деление и сложим результаты.
124 : 4 + 36 : 4 = 31 + 9 = 40.
2 способ. Заметим, что у нас есть общий делитель – 4. Вынесем его за скобки. Получим:
(124 + 36) : 4 = 160 : 4 = 40.
В обоих случаях у нас получился один и тот же ответ. Значит, свойство верно.
Разбор решения заданий тренировочного модуля
№ 1. Вычислите 812 : 14 = _____.
Решение: выполним деление уголком.
Ответ: 58.
№ 2. Найдите неизвестный множитель х из равенства: 15 ∙ х = 195.
Выберите верный ответ: х = 3; х = 13; х = 25; х = 15.
Решение: чтобы найти неизвестный множитель, надо произведение поделить на известный множитель, то есть:
15 ∙ х = 195
х = 195 : 15
Выполнив деление уголком, получим:
Ответ: х = 13.