Урок 14. Деление нацело

Поделиться:
Конспект урока

Математика

5 класс

Урок № 14

Деление нацело

Перечень вопросов, рассматриваемых в теме:

— деление натуральных чисел;

— свойства деления натуральных чисел.

Тезаурус

Деление – это математическое действие, обратное умножению.

Делимое – это число, которое делят.

Делитель – это число, на которое делят.

Частное – результат деления.

Делить на нуль нельзя.

Любое натуральное число а делится на 1 и само на себя:

а : 1 = а, а : а = 1

Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.

Обязательная литература

  1. Никольский С. М. Математика: 5 класс. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин. – М.: Просвещение, 2017. – 272 с.
  2. Потапов М. К. Математика. Книга для учителя. 5-6 классы. // М. К. Потапов, А. В. Шевкин. – М.: Просвещение, 2010.- 256 с.

Дополнительная литература

  1. Бурмистрова Т. А. Математика. Сборник рабочих программ. 5-6 классы. // Составитель Т. А. Бурмистрова – М.: Просвещение, 2014.- 80 с.
  2. Потапов М. К. Математика: дидактические материалы. 6 класс. // М. К. Потапов, А. В. Шевкин – М.: Просвещение, 2010.- 118 с.
  3. Чесноков А. С. Дидактические материалы по математике 5 класс. // А. С. Чесноков, К. И. Нешков. – М.: Академкнига, 2014.- 124 с.

Теоретический материал для самостоятельного изучения

Давайте вспомним, что нам уже известно об операции деления. Пусть у нас есть натуральные числа a и b, причём а больше b или равно b (a ≥ b). Говорят, что а делится на b нацело, если существует натуральное число с, при умножении которого на b получается а: a = b ∙ c.

Обычно слово «нацело» в этой фразе опускается. При этом записывают: a : b = с и называют а – делимым, b – делителем, с – частным.

Любое натуральное число а делится на 1 и само на себя:

а : 1 = а, а : а = 1

так как а ∙ 1 = а, 1 ∙ а = а.

Например, 14 делится на 1 и на 14.

14 : 1 = 14, 14 : 14 = 1

При делении ноля на любое натуральное число получается ноль: 0 : а = 0, потому что 0 ∙ а = 0.

Запомните: делить на нуль нельзя!

Любое натуральное число а делить на нуль нельзя, потому что не существует такого числа с, для которого выполнялось бы равенство а : 0 = с (так как с ∙ 0 = 0 ≠ а). Принято считать, что нуль на нуль делить нельзя.

Для деления чисел из двух и более цифр (знаков) применяют деление уголком.

Вспомним, как делить уголком, на примере.

Вычислим 392 : 28 = ?

Для начала запишем делимое и делитель уголком:

Урок 14. Деление нацело

Начнём делить 392 на 28 следующим образом.

Во-первых, определим неполное частное. Для этого слева направо сравниваем цифры делимого и делителя.

Рассмотрим цифру 3. Она меньше 28 – значит, нужно взять ещё одну цифру из делимого. 39 больше 28, следовательно, это неполное частное.

Урок 14. Деление нацело

Ставим точку в частном (под уголком делителя).

Урок 14. Деление нацело

Посчитаем, сколько цифр осталось в делимом, после неполного частного. У нас после 39 стоит только одна цифра – 2. Значит, и в результат добавляем ещё одну точку.

Урок 14. Деление нацело

Приступаем к делению: 28 помещается в 39 только один раз, поэтому ставим первой цифрой ответа единицу и вычитаем 28 из 39.

Урок 14. Деление нацело

После вычитания в остатке получилось 11, это меньше, чем 28, поэтому к 11 дописываем 2.

Урок 14. Деление нацело

112 делится на 28. Получаем 4. Записываем полученный результат второй цифрой в ответе.

Урок 14. Деление нацело

В остатке получился нуль – значит, числа разделились нацело. Таким образом, 392 : 28 = 14.

Важное свойство частного: делимое и делитель можно одновременно умножить или разделить на одно и то же натуральное число: частное от этого не изменится.

Вычислим 50 : 25 = ?

Сначала одновременно умножим 50 и 25 на 2. Получим:

100 : 50 = 2.

Теперь разделим 50 и 25 на 5. Получим:

10 : 5 = 2.

В обоих случаях ответ оказался одинаковым. Значит, свойство частного верно.

Если каждое из натуральных чисел a и b делится на натуральное число с, то верно равенство:

(a+ b) : c = a : c + b : c.

Убедимся в правдивости данного свойства на примере.

Вычислим выражение: 124 : 4 + 36 : 4.

Рассмотрим два способа решения.

1 способ. Выполним деление и сложим результаты.

124 : 4 + 36 : 4 = 31 + 9 = 40.

2 способ. Заметим, что у нас есть общий делитель – 4. Вынесем его за скобки. Получим:

(124 + 36) : 4 = 160 : 4 = 40.

В обоих случаях у нас получился один и тот же ответ. Значит, свойство верно.

Разбор решения заданий тренировочного модуля

№ 1. Вычислите 812 : 14 = _____.

Решение: выполним деление уголком.

Урок 14. Деление нацело

Ответ: 58.

№ 2. Найдите неизвестный множитель х из равенства: 15 ∙ х = 195.

Выберите верный ответ: х = 3; х = 13; х = 25; х = 15.

Решение: чтобы найти неизвестный множитель, надо произведение поделить на известный множитель, то есть:

15 ∙ х = 195

х = 195 : 15

Выполнив деление уголком, получим:

Урок 14. Деление нацело

Ответ: х = 13.