Урок 14. Объем шара и его частей

Поделиться:
Конспект урока

Геометрия, 11 класс

Урок №14. Объем шара и его частей

Перечень вопросов, рассматриваемых в теме

  • Доказательство теорем об объемах шара и его частей и площади сферы
  • Определение частей шара
  • Решение задач на нахождение объемов шара, его частей и площади сферы

Основная литература:

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 10-11 учебник для общеобразов. учрежд.: база и профильн. М: Просвещение.2009

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни и др. – М.: Просвещение, 2014. – 255, сс. 121-126.

Дополнительная литература:

Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 178-196.

Потоскуев Е.В., Звавич Л.И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.

Открытые электронные ресурсы:

Образовательный портал “Решу ЕГЭ”. https://mathb-ege.sdamgia.ru/test?theme=177

Теоретический материал для самостоятельного изучения

Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не больше данного R.

Радиусом шара называют всякий отрезок, соединяющий центр шара с точкой шаровой поверхности.

Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара.

Концы любого диаметра шара называются диаметрально противоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара.

 Сферическим поясом (шаровым поясом) называют часть сферы, заключенную между двумя параллельными плоскостями 

 Шаровым слоем называют часть шара, заключенную между двумя параллельными плоскостями 

Сферическим сегментом называют каждую из двух частей, на которые делит сферу пересекающая ее плоскость.

Шаровым сегментом называется часть шара, отсекаемая от него какой-нибудь плоскостью.

Шаровым сектором называют фигуру, состоящую из всех отрезков, соединяющих точки сферического сегмента с центром сферы

Объем шара равен Урок 14. Объем шара и его частей.

Объем шарового сегмента равен Урок 14. Объем шара и его частей.

Объем шарового сектора равен Урок 14. Объем шара и его частей.

Объем шарового слоя равен Урок 14. Объем шара и его частей.

Площадь сферы равна S=4 πR2.

Примеры и разбор решения заданий тренировочного модуля

№1. Круговой сектор радиуса R с центральным углом 60 градусов вращается вокруг одного из радиусов, образующих этот угол. Найдите объем тела вращения. 

Решение:

При вращении кругового сектора АОВ вокруг радиуса ОА получается тело вращения — шаровой сектор радиуса R=ОА и высотой сектора h=DA. Объем его вычисляется по формуле: V= (2/3)*πR²*h. Рассмотрим сечение этого сектора (смотри рисунок): в прямоугольном треугольнике ОВD (радиус круга ОА перпендикулярен хорде ВС) угол ВОD равен 60° (дано). Значит Тогда высота шарового сектора равна h=DA=OA-OD=R-R/2=R/2. 
V=(2/3)*π*R²*R/2=(1/3)πR³. 

№2. Найдите объем шарового сектора, если радиус шара равен 6 см, а высота конуса, образующего сектор, составляет треть диаметра шара.

Решение:

Урок 14. Объем шара и его частей

Шаровой сектор — это часть шара, ограниченная кривой поверхностью шарового сегмента и конической поверхностью, основанием которой служит основание сегмента, а вершиной — центр шара. Формула объема шарового сектора: V = (2/3)*πR²*h, где h — высота сегмента. В нашем случае  R=H+h, где Н — высота конуса, а h- высота сегмента. Тогда h = R-H = 6-4 =2, так как Н = (1/3)*2*R (дано). Значит V = (2/3)*π*36*2 = 48π.
Ответ: объем шарового сектора равен 48π

 

№3.По разные стороны от центра шара проведены два параллельных сечения с площадью Урок 14. Объем шара и его частей и Урок 14. Объем шара и его частей см2. Расстояние между сечениями равно Урок 14. Объем шара и его частей см. Определите объём получившегося шарового слоя.

Урок 14. Объем шара и его частей

Решение: запишем формулу для вычисления объема шарового слоя.

Урок 14. Объем шара и его частей

Чтобы найти объём шарового слоя нам необходимо знать его высоту и радиусы двух его оснований.

По условию задачи нам дано расстояние между сечениями, как раз-таки это расстояние и есть высота данного шарового слоя, и она равна Урок 14. Объем шара и его частей.

Теперь найдём чему равны радиусы оснований шарового слоя. Напомню, что сечением шара плоскостью является круг. Площадь круга вычисляется по формуле Урок 14. Объем шара и его частей. Отсюда найдём радиусы оснований шарового слоя. Тогда имеем, радиус одного основания равен Урок 14. Объем шара и его частей (см), радиус второго основания равен Урок 14. Объем шара и его частей (см).

Подставим радиусы оснований и высоту шарового слоя в формулу его объёма. Посчитаем. Получаем, что объём данного шарового слоя равен Урок 14. Объем шара и его частей.