Конспект урока
Геометрия, 10 класс
Урок №18. Компланарные векторы. Векторный метод решения задач
Перечень вопросов, рассматриваемых в теме:
— какие векторы называются компланарными и их изображение на чертежах
-определение компланарных векторов.
— признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов.
— основы векторного метода решения задач.
Основная литература:
Атанасян Л.С. и др. Геометрия. Учебник для 10-11классов — М.: Просвещение, 2017. C. 77-85.
Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса. 2016. С.88-93.
Теоретический материал для самостоятельного изучения:
Давайте вспомним основные определения по теме «Векторы». В этом поможет следующее задание: установите соответствие между понятием и его определением.
Вектор | ? | |
Равные векторы | Противоположно направлены и их длины равны. | |
Противоположные векторы | Направленный отрезок | |
Коллинеарные векторы | Сонаправлены и их длины равны. | |
Компланарные векторы | Лежат на одной или параллельных прямых |
Появилось новое понятие о векторах в пространстве, которого не было на плоскости — компланарность векторов. С определения компланарных векторов и начинаются главные отличия векторов в планиметрии и стереометрии.
Компланарные векторы.
Определение2.Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Рассмотрим некоторые случаи:
1 случай. Любые два вектора всегда будут компланарными, ведь через них
можно провести прямые, а через две прямые всегда можно провести
единственную плоскость.
2 случай. Три вектора будут компланарными если среди них есть пара коллинеарных
векторов. Тогда через один из коллинеарных векторов и вектор не коллинеарный ему
можно провести плоскость. А для второго из коллинеарных векторов легко
изобразить равный в этой плоскости.
3 случай. Если хотя бы один из трёх векторов является нулевым, то эти три вектора компланарны
Из планиметрии: Любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.
Следующая теорема выражает признак компланарности трех векторов. Теорема (признак) Если вектор можно представить в виде = х + у, где х и у — некоторые числа, то векторы , и компланарны.
Для сложения трёх некомпланарных векторов можно пользоваться правилом параллелепипеда. Отложим от произвольной точки О векторы =, =, = и построим параллелепипед так, чтобы отрезки ОА, ОВ и ОС были рёбрами.
Тогда ОD — диагональ этого параллелепипеда равна сумме векторов, и . Если вектор можно представить в виде суммы: = х + у + z, то говорят, что вектор d разложен по векторам , и . Числа х, у, z называют коэффициентами разложения.
Теорема. Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.
Часть 2. Векторный метод решения задач
Векторный метод решения задач – один из наиболее общих методов решения геометрических задач. Векторное решение стереометрических задач значительно проще их решения средствами элементарной геометрии.
Рассмотрим следующую задачу: Доказать, что прямая, проведенная через середины оснований трапеции, проходит через точку пересечения продолжений боковых сторон.
Пусть ABCD — данная трапеция, M и N — середины оснований BC И AD, а O — точка пересечения прямых AB и CD.
Докажем, что точка О лежит на прямой МN.
Условие задачи переводится на «векторный» язык. После такого перевода осуществляются алгебраические вычисления с векторами, а затем полученное снова «переводится» на «геометрический» язык.
Решением задач векторным методом занимались ученые: Уильман Гамильтон Иога́нн Берну́лли, Пьер Ферма, Рене Декарт, Леонард Эйлер.
Примеры и разбор решения заданий тренировочного модуля:
Задача. В параллелепипеде АВСDА1В1С1D1 М —точка пересечения диагоналей грани A1B1C1D1, точка K — середина ребра ВВ1. Докажите, что прямые А1В1, KМ и ВС1 параллельны некоторой плоскости.
Решение. Введем векторы: . Векторы некомпланарны.
Разложим векторы и по векторам. Получим:
+= .
Тогда векторы = + компланарны. Следовательно, они параллельны некоторой плоскости, тогда этой плоскости параллельны и прямые А1В1, KМ и ВС1.