Конспект урока
Геометрия
7 класс
Урок № 25
Прямоугольные треугольники
Перечень рассматриваемых вопросов:
- Виды треугольников.
- Прямоугольный треугольник.
- Свойства прямоугольного треугольника.
- Признаки равенства прямоугольных треугольников.
Тезаурус:
Остроугольный треугольник – треугольник, у которого все углы острые.
Тупоугольный треугольник – треугольник, у которого два угла острые, а третий – тупой.
Прямоугольный треугольник – треугольник, у которого один угол – прямой, т.е. равный 90°. Сторона прямоугольного треугольника, лежащая напротив прямого угла, называется гипотенузой, а две другие стороны – катетами.
Внешним углом треугольника называется угол, смежный любому углу треугольника. Его градусная мера равна сумме двух углов треугольника, не смежных с ним.
Основная литература:
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
Дополнительная литература:
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Давайте рассмотрим виды треугольников. Существуют следующие виды:
- Остроугольный треугольник – треугольник, у которого все углы острые.
- Тупоугольный треугольник – треугольник, у которого два угла острые, а третий – тупой.
- Прямоугольный треугольник – треугольник, у которого два угла острые, а один – прямой, т.е. равный 90°. Сторона прямоугольного треугольника, лежащая напротив прямого угла, называется гипотенузой, а две другие стороны – катетами.
Обратите внимание, на рисунке изображён треугольник АВС с прямым углом С, в прямоугольном треугольнике гипотенуза всегда является самой большой стороной.
Рассмотрим свойства прямоугольного треугольника:
- Сумма двух острых углов прямоугольного треугольника равна 90°.
Сумма всех углов треугольника равна 180°, прямой угол равен 900, следовательно, сумма двух острых углов прямоугольного треугольника равна 90°.
- Катет прямоугольного треугольника, лежащий напротив угла 300, равен половине гипотенузы.
Рассмотрим прямоугольный треугольник АВС, в котором ∠А – прямой, ∠В = 30° и, значит, ∠С = 60°.
Докажем, что FC = ½ BC
Достроим к треугольнику АВС равный ему треугольник ABD так, как у нас показано на рисунке. Получим треугольник ВСD, в котором ∠В = ∠D = 60°, поэтому DC = BC (по признаку равнобедренного треугольника). Но АС = ½ DC. Следовательно, АС = ½BC, что и требовалось доказать.
- Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°.
Рассмотрим прямоугольный треугольник АВС, у которого катет АС равен половине гипотенузы ВС. Докажем, что ∠АВС = 30°.
Достроим к треугольнику АВС равный ему треугольник ABD так, как у нас показано на рисунке. Получим равносторонний треугольник BCD. Углы равностороннего треугольника равны друг другу (т.к. сумма углов треугольника равна 180°, а в равностороннем треугольнике все углы равны, следовательно, 180° : 3= 60° – каждый угол равностороннего треугольника). В частности, ∠DВС = 60°. Но ∠DВС= 2∠АВС. Следовательно, ∠АВС = 30°, что и требовалось доказать.
Признаки равенства прямоугольных треугольников.
Так как в прямоугольном треугольнике угол между двумя катетами прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует:
если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
Далее из второго признака равенства треугольников следует:
если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему другого, то такие треугольники равны.
Рассмотрим ещё два признака равенства прямоугольных треугольников.
Теорема. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
Дано: ∆АВС и ∆НМХ, ∠С = ∠Х = 90°, АВ = НМ, ∠А = ∠Н.
Доказать: ∆АВС и ∆НМХ
Доказательство. Из первого свойства прямоугольных треугольников мы можем сделать вывод, что в таких треугольниках два других острых угла также равны, поэтому треугольники равны по второму признаку равенства треугольников (по стороне и двум прилежащим к ней углам). Теорема доказана.
Разбор заданий тренировочного модуля.
№ 1.Найдите острые углы прямоугольного равнобедренного треугольника.
Объяснение. Мы знаем, что сумма двух острых углов в прямоугольном треугольнике равна 90°, а в равнобедренном треугольнике углы при основании равны, следовательно, можно вычислить градусную меру острого угла прямоугольного равнобедренного треугольника: 90° : 2= 45°.
Ответ: острый угол прямоугольного равнобедренного треугольника равен 45°.
№ 2.Опираясь на рисунок, укажите, по какому признаку равны треугольники.
Варианты ответов:
- по катету и прилежащему к нему острому углу;
- по гипотенузе и прилежащему к ней острому углу;
- по катету и прямому углу;
- двум катетам.
Объяснение. На рисунке указано равенство катетов МС и ВС, углы МСН и ВСА вертикальны, значит, они равны. Следовательно, треугольники АВС и НСМ равны по катету и прилежащему к нему острому углу, подходит ответ 1.
Ответ: 1. по катету и прилежащему к нему острому углу.