Рассмотрим окружность с центром в точке O. Отметим на окружности две точки A и В.
Они разделяют окружность на две дуги. Для того, чтобы различать эти дуги, на каждой из них отмечают промежуточную точку и обозначают дуги тремя буквами.
Например, дуга AСВ и дуга ADB.
∪ ACB и ∪ ADB
Когда понятно, о какой дуге идет речь, то её обозначают двумя буквами.
Например, дуга АС.
∪ АС
Если отрезок, соединяющий концы дуги, является диаметром окружности, то дуга называется полуокружностью.
Любой диаметр делит окружность на две полуокружности.
Рассмотрим угол, вершина которого находится в центре окружности.
Дадим определение: Угол с вершиной в центре окружности называется её центральным углом.
Центральному углу NОM соответствуют две дуги с концами N и M.
Центральный угол может быть развернутым и неразвернутым. Если центральный угол развернутый, то ему соответствуют две полуокружности.
∠NOM — центральный угол
Если центральный угол неразвернутый, то дуга, расположенная внутри этого угла меньше полуокружности. На рисунке эта дуга выделена цветом.
Про другую дугу, соответствующую центральному углу говорят, что она больше полуокружности. На рисунке это дуга NKM.
Дугу окружности можно измерять в градусах.
Если дуга MN окружности с центром в точке O равна полуокружности или меньше полуокружности, то её градусная мера считается равной градусной мере центрального угла NOM.
∪ NKM = 180° ∪ NM = ∠NOM ∪ NKM = 360° — ∠NOM
Если дуга MN больше полуокружности, то ее градусная мера считается равной разности 360° и градусной меры ∠NOM.
Таким образом, градусная мера дуги равна градусной мере соответствующего центрального угла или угла, дополняющего центральный угол до 360°.
Геометрия, 7-9: учеб. для общеобразоват. учреждений/ [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. – М.: Просвещение, 2017.