Урок 3. Квадратные уравнения, неравенства и их системы

Поделиться:
Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №3. Квадратные уравнения, неравенства и их системы.

Перечень вопросов, рассматриваемых в теме:

  • систематизация знаний учащихся о решении квадратных уравнений и неравенств;
  • установление зависимости количества и расположения корней квадратного уравнения от его коэффициентов и значения дискриминанта;
  • способы решения квадратных уравнений и неравенств с параметрами.

Глоссарий по теме:

Параметр — (от греч. parametron — отмеривающий) в математике, величина, числовые значения которой позволяют выделить определенный элемент из множества элементов того же рода.

Основная литература:

Колягин Ю. М., Ткачева М. В., Фёдорова Н.Е. и др. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. — М.: Просвещение, 2017.

Ткачева М. В., Федорова Н. Е. Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый и профильный уровни. 2016.

Шабунин М. И., Ткачева М. В., Фёдорова Н.Е. и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. Профильный уровень. 2016.

Теоретический материал для самостоятельного изучения

В курсе средней школы будут рассматриваться показательные, логарифмические, тригонометрические уравнения и неравенства. Чтобы облегчить дальнейшее изучение специальных уравнений, нужно уметь решать квадратные уравнения и неравенства, устанавливать и объяснять зависимость вида решения от его коэффициентов и дискриминанта, представлять геометрическую интерпретацию задач.

Квадратные уравнения.

На уроке будем рассматривать различные способы решения квадратных уравнений.

Как определить, сколько корней имеет уравнение, подскажет дискриминант.

Дискриминант – это число, которое находим по формуле Урок 3. Квадратные уравнения, неравенства и их системы

Если D <0 корней нет, если D = 0 один корень, если D> 0 два корня.

Если дискриминант D> 0 , корни можно найти по формуле:

Урок 3. Квадратные уравнения, неравенства и их системы

Если D = 0 , то Урок 3. Квадратные уравнения, неравенства и их системы

Рассмотрите пример. Решить уравнение Урок 3. Квадратные уравнения, неравенства и их системы

Шаг 1. Выпишем коэффициенты ab, c. 

Шаг 2. Найдем дискриминант. D=16.

Шаг 3. Запишем формулу корней и подставим значения. Вычислим значения корней: Урок 3. Квадратные уравнения, неравенства и их системы

Заметим:

1.Перед решением квадратного уравнения привести его к стандартному виду.

2. Избавьтесь от минуса перед Урок 3. Квадратные уравнения, неравенства и их системы. Для этого надо умножить всё уравнение на -1.

3. Если в уравнении есть дробные коэффициенты, умножьте уравнение на общий знаменатель.

4. Проверяйте корни по теореме Виета. Это просто, когда a=1.

Рассмотрите другие формулы:

Урок 3. Квадратные уравнения, неравенства и их системы, где второй коэффициент b=2k – четное число.

Приведенное квадратное уравнение Урок 3. Квадратные уравнения, неравенства и их системы , старший коэффициент равен a= 1, проще решать по теореме Виета.

Уравнение (х-3) (х+5) =0 является квадратным. Для его решения воспользуйтесь свойством: произведение равно 0, когда один из множителей равен 0.

Осталось вспомнить, как решаются неполные квадратные уравнения. Неполные — значит один или два коэффициента равны нулю.

Для решения систем уравнений применяются все методы решения: подстановки, сложения, графический.

Рассмотрим несколько примеров:

Пример 1.

Урок 3. Квадратные уравнения, неравенства и их системы

Если из одного из уравнений можно выразить х или у, применяем метод подстановки. Выразите х из первого уравнения и подставьте во второе. Решите и найдите корни.

Пример 2.

Урок 3. Квадратные уравнения, неравенства и их системы

Применяем метод сложения. Выполнив сложение, получаем уравнение Урок 3. Квадратные уравнения, неравенства и их системы, далее x= ±5. Находим у= ±2. Составляем возможные пары чисел.

Записываем ответ: (5; 2), (5; -2), (-5; 2), (- 5; -2).

Пример 3. Иногда проще ввести новые переменные.

Пусть xy=u, x+y=v. Тогда систему можно записать в более простом виде:

Урок 3. Квадратные уравнения, неравенства и их системы

Решение смотри в примере 1.

Часть 2. Квадратные неравенства.

Теперь, когда мы разобрали решение квадратных уравнений, переходим к решению квадратных неравенств
ax^2+ bx + c больше или меньше нуля.  

Шаг 1. Запишем соответствующее неравенству квадратное уравнение и найдем его корни. Отметим корни на оси OХ и схематично покажем расположение ветвей параболы «вверх» или «вниз».

Шаг 2. Расставим на оси знаки, соответствующие знаку квадратичной функции: там, где парабола выше оси, ставим +, а там, где ниже –.

Шаг 3. Выписываем интервалы, соответствующие знаку неравенства. Если неравенство нестрогое, корни входят в интервал, если строгое не входят.

Вспомните возможные случаи расположения корней на оси и ветвей параболы в зависимости от коэффициента а и дискриминанта.

Метод интервалов упрощает схему решения. По-прежнему находим корни квадратного трехчлена, расставляем на числовой прямой. Определяем знаки на интервалах + или – по схеме:

если а>0 + — +, если а <0 — + -. Или путём подстановки произвольного значения квадратный трехчлен.

Рассмотрим несколько примеров:

D=0 Урок 3. Квадратные уравнения, неравенства и их системы все точки параболы выше оси и только одна х=2 на оси ОХ -нет решений.

D<0 Урок 3. Квадратные уравнения, неравенства и их системыкоэффициент а=2>0 ветви вверх. Парабола выше оси, все значения положительны, значит х- любое число. Неравенство Урок 3. Квадратные уравнения, неравенства и их системы не имеет решений.

Далее рассмотрим схему решения системы неравенств.

Алгоритм решения системы неравенств.

1.Решить первое неравенство системы, изобразить его графически на оси x.

2.Решить второе неравенство системы, изобразить его графически на оси x.

3.Выбрать в ответ те участки, в которых решение первого и второго неравенств пересекаются. Записать ответ.

Часть 3

Теперь, когда мы разобрали решение квадратных уравнений и неравенств переходим к решению самых сложных заданий с параметрами. Если в уравнении или неравенстве некоторые коэффициенты заданы не числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Первый шаг в решении — найти особое значение параметра.

Второй шаг – определить допустимые значения.

Если в задаче требуется определить знаки корней квадратного уравнения, то, как правило, удобнее использовать теорему Виета.

Но прежде, чем применять теорему Виета, обязательно нужно проверить, что уравнение имеет корни! Для этого вычисляем дискриминант.

Рассмотрите примеры решения неравенства с параметром.

Графический метод решения обладает несомненным преимуществом – можно представить решение наглядно.

Для любого свойства, сформулированного на алгебраическом языке, нужно уметь давать геометрическую интерпретацию и, наоборот, по поведению графика параболы дать общую оценку коэффициентов квадратного трехчлена и его корней.

Например, если старший коэффициент квадратного трехчлена меньше 0, то ветви параболы направлены вниз. Если дискриминант больше 0, то трехчлен имеет различные действительные корни и парабола пересекает ось абсцисс в двух точках и т.д.

Мы рассмотрели лишь некоторые примеры, иллюстрирующие применение графического метода к решению квадратных уравнений и неравенств. Более подробно с методами решения квадратных уравнений, неравенств, их систем вы можете, поработав с интерактивными моделями.

Задания тренировочного модуля с разбором.

Пример 1.

При каких значениях параметра, а квадратное уравнение

Урок 3. Квадратные уравнения, неравенства и их системыимеет только один корень?

Находим дискриминант D=25-4∙2∙5a=25-40a. Уравнение имеет один корень, если D=0, т.е. 25-40a=0, а=5/8.

Пример 2.

Определите, на каком интервале значения квадратного трехчлена Урок 3. Квадратные уравнения, неравенства и их системы отрицательны?

Решаем неравенство: Урок 3. Квадратные уравнения, неравенства и их системы. Находим дискриминант квадратного трехчлена D= 1-4∙2∙ (-1) =1+8=9. Находим корни Урок 3. Квадратные уравнения, неравенства и их системы. Расставляем точки на числовой прямой.

Урок 3. Квадратные уравнения, неравенства и их системы

Старший коэффициент а=2 ветви параболы вверх. Знаки чередуются + — +. Записываем ответ: — 0,5< х <1.