Отметим на плоскости точку О – центр поворота и зададим угол α – угол поворота. Поворотом плоскости вокруг точки О на угол α называется отображение плоскости на себя, при котором каждая точка М отображается в такую точку М1, что ОМ = ОМ1 и угол МОМ1 равен α. Этот вид отображения плоскости на себя называется поворотом.
Задачи на построение:
Задача 1. Построим поворот точки М на угол в 600 по часовой стрелке вокруг точки О.
1. Отметим точки О и М.
2. Проведем луч ОМ.
3. Отложим с помощью транспортира угол в 600.
4. На проведенном луче циркулем отложим отрезок, равный ОМ.
5. Поставим точку М1.
При этом точка М отображается в точку М1.
Задача 2. Построим отрезок, в который переходит отрезок АВ при повороте на 120° против часовой стрелки около точки О.
1. Проведем луч ОА.
2. От него против часовой стрелки отложим ∠АОА1 = 120°.
3. ОА = ОА1;
4. Проведем луч ОВ.
5. От него против часовой стрелки отложим ∠ВОВ1 = 120°.
6. ОВ = ОВ1, А1В1 – образ отрезка АВ при повороте вокруг точки О на 120° против часовой стрелки.
Задача 3. Построим треугольник ABC и зададим некоторый угол поворота α. Повернем каждую из точек А, В, С на угол α против часовой стрелки.
При этом точка А отображается в точку А1, точка отображается в точку В1, точка С отображается в точку С1.
Соединим отрезками точки А1, В1, С1. Треугольник АВС отображается на треугольник А1В1С1 при повороте на угол α.
Выделение существенных признаков поворота.
1. Отображение плоскости на себя.
2. Каждая точка М отображается в такую точку М1, что ОМ = ОМ1
3. ∠МОМ1 = α.
Сравним данную фигуру и её отображение. Что общего в них?
Является ли поворот движением – отображением плоскости на себя, сохраняющим расстояние?
Доказательство: пусть при повороте на угол α точки А и В отображаются в точки А1 и В1.Треугольники ОАВ и ОА1В1 равны по двум сторонам и углу между ними: ОА = ОА1, ОВ = ОВ1 и ∠АОВ = ∠А1ОВ1 значит АВ = А1В1. Т.е расстояние между точками А и В равно расстоянию между точками А1 и В1.
Отметим следующие свойства.
При повороте
1) отрезок переходит в равный ему отрезок;
2) угол переходит в равный ему угол;
3) окружность переходит в равную ей окружность;
4) любой многоугольник переходит в равный ему многоугольник;
5) параллельные прямые переходят в параллельные прямые;
6) перпендикулярные прямые переходят в перпендикулярные прямые.
Чтобы задать поворот достаточно задать центр поворота, угол поворота, направление поворота.
Поворот на 180° по часовой стрелке совпадает с поворотом этой же точки на 180° против часовой стрелки и является центральной симметрией.