Урок 30. Сумма кубов. Разность кубов

Поделиться:
Конспект урока

Алгебра

7 класс

Урок № 30

Сумма кубов. Разность кубов

Перечень вопросов, рассматриваемых в теме:

  • Формулы сокращённого умножения.
  • Сумма кубов, разность кубов.
  • Разложение многочлена на множители.
  • Тождественные преобразования.
  • Вычисление значения числовых выражений.

Тезаурус:

Формулы сокращённого умножения.

(a + b)2 = a2 + 2ab + b2

(a – b)2 = a2 – 2ab + b2

(a + b)(a – b) = a2 – b2

a3 + b3= (a + b)(a 2– ab + b2)

a3 – b3= (a – b)(a2 + ab + b2)

Применение:

  • упрощение умножения многочленов;
  • разложение многочлена на множители;
  • вычисление значения числового выражения;
  • тождественные преобразования.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Формула суммы кубов.

Рассмотрим произведение;

(a + b)(a2 – ab + b2).

Применив правило умножения многочленов, и приведя подобные члены, получим:

(a + b)(a2 – ab + b2) = a3 – a2b + ab2 + ba2 – ab2 +b3 = a3 + b3

a3 + b3 = (a + b)(a2 – ab + b2)

Равенство называют формулой суммы кубов.

Читается так: «сумма кубов двух чисел равна произведению суммы этих чисел и неполного квадрата их разности».

Формула разности кубов.

Аналогично докажем формулу разности кубов.

(a – b)(a2 + ab + b2) = a3 + a2b + ab2 – ba2 – ab2 – b3= a3 – b3

Читается так: «разность кубов двух чисел равна произведению разности этих чисел и неполного квадрата их суммы».

a3 b3= (a b)(a2+ ab + b2)

Выражения (a2+ ab + b2) и (a2– ab + b2) называют неполным квадратом суммы или разности.

Формула задаёт разложение многочленов:

a3 + b3 и a3 – b3 на два множителя:

(a + b)(a2 – a b+ b2) и (a – b)(a2+ ab + b2).

Формулы суммы и разности кубов используют для упрощения вычислений.

Разбор решения заданий тренировочного модуля.

Задача 1.

Выполните умножение многочленов:

  1. ( x + 3)(x2 –3x +9) = x3 + 33 = x3 + 27.
  2. (2x – 3y)(4×2 +6xy + 9y2) = (2x)3 – (3y)3 = 8×3 –27y3.

Задача 2.

Разложите многочлен на множители:

  1. x3 – 8 y3 = x3 – (2y)3 = (x – 2y) (x2 +2xy + 4y2 )
  2. 64 a3 – 27c3 = (4a)3 – (3c)3 = (4a – 3c)(16a2 +12 ac + 9c2).

Задача 3.

Упростите выражение:

(x +2)(x2 – 2x +4) – x(x–3)(x+3).

Решение:

x3 + 23 – x(x2 – 9) = x3 + 8 – x3 + 9x = 8 + 9x.

Ответ: 8 + 9x.

Задача 4.

Доказать, что выражение 1233 + 273 кратно 50.

Используем формулу:

a3 + b3 = (a + b)(a2 – ab + b2),

получим: (123 + 27)(1232 123 · 27 + 272) =150 · (1232 123 · 27 + 272).

Произведение делится на 50, так как первый множитель делится на 50: (150 : 50 = 3). Нет необходимости считать значение выражения в скобках. Утверждение доказано.