Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №37. Геометрическая вероятность.
Перечень вопросов, рассматриваемых в теме:
- Геометрическая вероятность
- Задачи на геометрическую вероятность
Глоссарий по теме
Испытанием называется осуществление определенных действий.
Под событием понимают любой факт, который может произойти в результате испытания.
Любой результат испытания называется исходом.
Достоверным называют событие, которое в результате испытания обязательно произойдёт.
Невозможным называют событие, которое заведомо не произойдёт в результате испытания.
Геометрической вероятностью некоторого события называется отношение P(A) = g/G, где G – геометрическая мера, выражающая общее число всех равновозможных исходов данного испытания, а g – мера, выражающая количество благоприятствующих событию A исходов
Основная литература:
Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. Под ред. А.Б. Жижченко. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни. – 2-е изд. – М.: Просвещение, 2010. – 336 с.: ил. – ISBN 978-5-09-022250
Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 11 класса: Учеб. пособие для учащихся шк. и классов с углубл. изуч. математики. — 4-е изд. — М.: Просвещение, 1995. — 288 с.: ил. — ISBN 5-09-0066565-9. сс.253-259.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.
Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.
Теоретический материал для самостоятельного изучения
Вероятность наступления некоторого события A в испытании равна P(A) = g/G, где G – геометрическая мера, выражающая общее число всех равновозможных исходов данного испытания, а g – мера, выражающая количество благоприятствующих событию A исходов.
Пусть на плоскости задана некоторая область D, площадь которой равна S(D), и в ней содержится область d, площадь которой равна s(d). В области D наудачу ставится точка. Тогда вероятность события А – «точка попадает в область d» равна числу P(A) = s(d)/S(D).
Рисунок 1 — иллюстрация геометрической вероятностей
Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Вероятность попадания точки на отрезок l равна P(A) = |l|/|L|.
Пусть пространственная фигура d составляет часть фигуры D. В фигуру D наудачу ставится точка. Вероятность попадания точки в фигуру d равна P(A) = V(d)/V(D).
Пример использования геометрического определения вероятности при решении задачи.
Два друга договорились встретиться в определенном месте между 12 и 13 часами. Пришедший первым ждет другого в течении 20 минут, после чего уходит. Чему равна вероятность встречи друзей, если приход каждого из них может произойти
наудачу в течении указанного часа и моменты прихода независимы?
Решение:
х — момент прихода первого друга
y — момент прихода второго друга
0≤х≤60, 0≤у≤60
⎮х-у⎮≤20.
Сделаем рисунок
Рисунок 2 — Иллюстрация к задаче
S=602–2·1/2·402=2000
P(A) = 2000/602 = 5/9.
Ответ: вероятность встречи 5/9.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Метровый шнур случайным образом разрезают ножницами. Найти вероятность того, что длина обрезка составит не менее 80 см.
Решение:
Общему числу исходов соответствует длина шнура 1 м. Чтобы длина обрезка составила не менее 0,8 м, можно отрезать не более 0,2 м. Такие отрезы можно выполнить с любой стороны шнура, их суммарная длина равна 0,2+0,2=0,4 м. По геометрическому определению:
P(A)=l/L=0,4/1=0,4
Ответ: 0,4
Пример 2. В шар брошена случайная точка.
2а) С какой вероятностью она попадёт в центр шара?
Решение:
Объём одной точки (центра шара) равен нулю, значит и искомая вероятность равна 0
Ответ: 0
2б) С какой вероятностью она попадёт на какой-нибудь диаметр шара?
Решение:
Любая точка шара всегда попадает на какой-нибудь диаметр. Поэтому вероятность равна единице.
Ответ: 1.
2в) С какой вероятностью она попадёт в одно, определённое, полушарие?
Решение:
При решении этой задачи используем отношение объемов фигур. Пусть весь объём шара равен V. Все точки шара — трёхмерная фигура Ω. Искомая вероятность равна отношению объёма полушария V(A) к объёму шара V:
Ответ: 0,5
Пример 3. В круг радиуса см вписан равнобедренный прямоугольный треугольник. В круг наудачу ставится точка. Найдите вероятность того, что она не попадёт в данный треугольник. При необходимости в расчетах используйте значение π с точностью до целых.
Решение:
Площадь круга равна
Гипотенуза прямоугольного треугольника, вписанного в круг, равна диаметру круга (прямой угол опирается на диаметр), то есть .
Поскольку треугольник равнобедренный, его катеты равны между собой, и по теореме Пифагора каждый катет равен . Площадь такого треугольника будет равна (можно найти площадь треугольника, не вычисляя длины катета: рассмотрим квадрат со стороной, равной гипотенузе нашего треугольника, площадь такого квадрата в четыре раза больше площади треугольника
Вероятность попадания точки в треугольник равна отношению площадей треугольника и круга:
Ответ: 1/3