Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №38. Определение комплексного числа. Действия с комплексными числами.
Перечень вопросов, рассматриваемых в теме
1) понятие мнимой единицы;
2) определение комплексного числа;
3) действия с комплексными числами и действия над ними.
Глоссарий по теме
Определение. Комплексным числом называется выражение вида a + bi, где a и b — действительные числа.
Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.
Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.
Определение. Суммой комплексных чисел z1 = a1 + b1i и z2 = a2 + b2i называется комплексное число z, действительная часть которого равна сумме действительных частей z1 и z2, а мнимая часть — сумме мнимых частей чисел z1 и z2, то есть z = (a1 + a2) + (b1 + b2) i.
Числа z1 и z2 называются слагаемыми.
Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z,
что z + z2 = z1.
Теорема. Разность комплексных чисел существует и притом единственная.
Определение. Произведением комплексных чисел z1=a1+ b1 i и z2=a2+b2 i называется комплексное число z, определяемое равенством:
z = (a1a2 – b1b2) + (a1b2 + a2b1) i.
Числа z1 и z2 называются сомножителями.
Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.
Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Мнимые числа, которыми мы дополняем действительные числа, записываются в виде bi, где i – мнимая единица, причем i 2 = —1.
Исходя из этого, получим следующее определение комплексного числа.
Определение. Комплексным числом называется выражение вида a + bi, где a и b — действительные числа. При этом выполняются условия:
а) Два комплексных числа a1 + b1i и a2 + b2i равны тогда и только тогда, когда a1=a2, b1=b2.
б) Сложение комплексных чисел определяется правилом:
(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2) i.
в) Умножение комплексных чисел определяется правилом:
(a1 + b1i) (a2 + b2i) = (a1a2 — b1b2) + (a1b2 — a2b1) i.
Запись комплексного числа в виде a + bi называют алгебраической формой комплексного числа, где а – действительная часть, bi – мнимая часть, причем b – действительное число.
Комплексное число a + bi считается равным нулю, если его действительная и мнимая части равны нулю: a = b = 0
Комплексное число a + bi при b = 0 считается совпадающим с действительным числом a: a + 0i = a.
Комплексное число a + bi при a = 0 называется чисто мнимым и обозначается bi: 0 + bi = bi.
Два комплексных числа z = a + bi и = a – bi, отличающиеся лишь знаком мнимой части, называются сопряженными.
Над комплексными числами в алгебраической форме можно выполнять следующие действия.
1) Сложение.
Определение. Суммой комплексных чисел z1 = a1 + b1 i и z2 = a2 + b2i называется комплексное число z, действительная часть которого равна сумме действительных частей z1 и z2, а мнимая часть — сумме мнимых частей чисел z1 и z2, то есть z = (a1 + a2) + (b1 + b2) i.
Числа z1 и z2 называются слагаемыми.
Сложение комплексных чисел обладает следующими свойствами:
1º. Коммутативность: z1 + z2 = z2 + z1.
2º. Ассоциативность: (z1 + z2) + z3 = z1 + (z2 + z3).
3º. Комплексное число – a – bi называется противоположным комплексному числу z = a + bi. Комплексное число, противоположное комплексному числу z, обозначается -z. Сумма комплексных чисел z и -z равна нулю: z + (-z) = 0
Пример 1. Выполните сложение (3 – i) + (-1 + 2i).
(3 – i) + (-1 + 2i) = (3 + (-1)) + (-1 + 2) i = 2 + 1i.
2) Вычитание.
Определение. Вычесть из комплексного числа z1 комплексное число z2, значит найти такое комплексное число z, что z + z2 =z1.
Теорема. Разность комплексных чисел существует и притом единственная.
Пример 2. Выполните вычитание (4 – 2i) — (-3 + 2i).
(4 – 2i) — (-3 + 2i) = (4 — (-3)) + (-2 — 2) i = 7 – 4i.
3) Умножение.
Определение. Произведением комплексных чисел z1=a1+ b1 i и z2=a2+b2i называется комплексное число z, определяемое равенством:
z = (a1 a2 – b1b2) + (a1b2 + a2b1) i.
Числа z1 и z2 называются сомножителями.
Умножение комплексных чисел обладает следующими свойствами:
1º. Коммутативность: z1z2 = z2 z1.
2º. Ассоциативность: (z1z2)z3 = z1 (z2z3)
3º. Дистрибутивность умножения относительно сложения:
(z1 + z2) z3 = z1z3 + z2z3.
4º. z · = (a + bi) (a – bi) = a2 + b2 — действительное число.
На практике умножение комплексных чисел производят по правилу умножения суммы на сумму и выделения действительной и мнимой части.
В следующем примере рассмотрим умножение комплексных чисел двумя способами: по правилу и умножением суммы на сумму.
Пример 3. Выполните умножение (2 + 3i) (5 – 7i).
1 способ. (2 + 3i) (5 – 7i) = (2⋅ 5 – 3⋅ (- 7)) + (2⋅ (- 7) + 3⋅ 5)i =
= (10 + 21) + (- 14 + 15)i = 31 + i.
2 способ. (2 + 3i) (5 – 7i) = 2⋅ 5 + 2⋅ (- 7i) + 3i⋅ 5 + 3i⋅ (- 7i) =
= 10 – 14i + 15i + 21 = 31 + i.
4) Деление.
Определение. Разделить комплексное число z1 на комплексное число z2, значит найти такое комплексное число z, что z · z2 = z1.
Теорема. Частное комплексных чисел существует и единственно, если z2 ≠ 0 + 0i.
На практике частное комплексных чисел находят путем умножения числителя и знаменателя на число, сопряженное знаменателю.
Пусть z1 = a1 + b1i, z2 = a2 + b2i, тогда
В следующем примере выполним деление по формуле и правилу умножения на число, сопряженное знаменателю.
Пример 4. Найти частное
1 способ.
2 способ.
5) Возведение в целую положительную степень.
а) Степени мнимой единицы.
Пользуясь равенством i2 = -1, легко определить любую целую положительную степень мнимой единицы. Имеем:
i3 = i2 i = -i,
i4 = i2 i2 = 1,
i5 = i4 i = i,
i6 = i4 i2 = -1,
i7 = i5 i2 = -i,
i8 = i6 i2 = 1 и т. д.
Это показывает, что значения степени in, где n – целое положительное число, периодически повторяется при увеличении показателя на 4 .
Поэтому, чтобы возвести число i в целую положительную степень, надо показатель степени разделить на 4 и возвести i в степень, показатель которой равен остатку от деления.
Пример 5. Вычислите: (i 36 + i 17) · i 23.
i 36 = (i 4) 9 = 1 9 = 1,
i 17 = i 4⋅ 4+1 = (i 4)4⋅ i = 1 · i = i.
i 23 = i 4⋅ 5+3 = (i 4)5⋅ i3 = 1 · i3 = — i.
(i 36 + i 17) · i 23 = (1 + i) (- i) = — i + 1= 1 – i.
б) Возведение комплексного числа в целую положительную степень производится по правилу возведения двучлена в соответствующую степень, так как оно представляет собой частный случай умножения одинаковых комплексных сомножителей.
Пример 6. Вычислите: (4 + 2i) 3
(4 + 2i) 3 = 4 3 + 3⋅ 42⋅ 2i + 3⋅ 4⋅ (2i)2 + (2i)3 = 64 + 96i – 48 – 8i = 16 + 88i.
Стоит отметить. что с помощью комплексных чисел можно решать квадратные уравнения, у которых отрицательный дискриминант.
Рассмотрим решение квадратных уравнений, дискриминант которых отрицателен.
Пример 7. Решите уравнения:
а) x2 – 6x + 13 = 0; б) 9×2 + 12x + 29 = 0.
Решение. а) Найдем дискриминант по формуле
D = b2 – 4ac.
Так как a = 1, b = – 6, c = 13, то
D = (– 6)2 – 4×1×13 = 36 – 52 = – 16;
Корни уравнения находим по формулам
б) Здесь a = 9, b = 12, c = 29. Следовательно,
D = b2 – 4ac =122 – 4×9×29 = 144 – 1044 = – 900,
Находим корни уравнения:
Мы видим, что если дискриминант квадратного уравнения отрицателен, то квадратное уравнение имеет два сопряженных комплексных корня.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Вычислите сумму (2 + 3i)+ (5 – 7i).
- 7 +4i
- 7 — 4i
- 6 — 3i
- 6 + 3i
Решение: 2 + 3i + 5 — 7i = (2 + 5) + (3 — 7)i = 7 — 4i.
Можем сделать вывод, что верный ответ
2. 7 — 4i.
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Чему будет равно частное: (5 + 3i):(1 — 2i)=______
Решение:
Ответ: -0.2 + 2.6i