Урок 40. Признаки делимости

Поделиться:
Конспект урока

Математика

5 класс

Урок №40

Признаки делимости

Перечень рассматриваемых вопросов:

  • свойства делимости;
  • признаки делимости на 2, 3, 5, 9, 10;
  • чётные и нечётные числа.

Тезаурус

Кратное натурального числа – это число, которое делится на данное натуральное число без остатка.

Чётное число – это число, делящееся на два.

Нечётное число – это число, не делящееся на два.

Обязательная литература

  1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. ФГОС//С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5 кл. //П. В. Чулков, Е. Ф. Шершнёв, О.Ф. Зарапина.– М.: Просвещение, 2009. ¬–142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. //И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

«Поэт должен видеть то, чего не видят другие. И это же должен и математик», – однажды сказала Софья Ковалевская, русский математик.

И мы сегодня увидим необычные признаки деления, которые помогут нам выполнять обычные арифметические действия намного быстрее и проще.

Оказывается, существуют признаки, по которым можно определить, делится ли данное число на 2, 3, 5, 9 и 10.

Начнём с признака делимости на 10.

Если число оканчивается цифрой 0, то оно делится на 10.

Например, 1570 делится на 10, т. к. оканчивается цифрой нуль, его можно представить в виде произведения чисел 10 и 157, которое делится на десять по свойству 1, если один из множителей делится на некоторое число, то и произведение делится на это число. Значит, число 1570 делится на 10.

А число тысяча пятьсот семьдесят один на десять не делится, т. к. тысяча пятьсот семьдесят один на это сумма двух чисел – тысяча пятьсот семьдесят и единицы, первое число делится на десять, а другое, т. е. один, не делится на десять. Это выходит по свойству 4.

Если одно из двух чисел делится на некоторое число, а другое на него не делится, то их сумма и разность не делятся на это число.

Рассмотрим признак делимости на 5.

Если число оканчивается на одну из цифр: 0 или 5, – то оно делится на 5.

Например, число 1570 делится на 5, т. к. 1570 делится 10, а 10 делится на 5. По второму свойству делимости, если первое число делится на второе, а второе делится на третье, то первое число делится на третье. Значит, число 1570 делится на 5.

Аналогичные рассуждения проведём для числа 1575, но здесь применим третье свойство делимости – если каждое из двух чисел делится на некоторое число, то их сумма и разность делятся на это число.

Число 1575 делится на 5, т. к. число 1575 – это сумма чисел 1570 и 5, при этом оба числа делятся на 5, следовательно, их сумма тоже делится на 5.

А 1573 не делится на 5. В рассуждениях используем четвёртое свойство делимости – если одно из двух чисел делится на некоторое число, а другое на него не делится, то их сумма и разность не делятся на это число.

Исходя из него, число не будет делиться на 5, т. к. при разложении числа 1573 на сумму чисел 1570 и 3 число 3 не делится на 5.

Рассмотрим признак делимости на 2.

Если число оканчивается одной из цифр: 0, 2, 4, 6, 8, – то оно делится на 2.

Например, числа 120, 124 делятся на два, а 125 не делится на два. Т. к. число 120 делится на 10, а 10 делится на 2, тогда по второму свойству делимости – если первое число делится на второе, а второе делится на третье, то первое число делится на третье – число 120 делится на 2.

Число 124 делится на 2, т. к. число 124 – это сумма чисел 120 и 4, при этом оба числа делятся на 2, следовательно, их сумма тоже делится на 2 (по третьему свойству делимости).

Число 125 на 2 не делится, т. к. при разложении числа 125 на сумму чисел 120 и 5 число 5 не делится на 2 (по четвёртому свойству делимости).

Исходя из вышесказанных признаков, можно ввести определение чётного и нечётного числа.

Чётные числа – числа, делящиеся на 2.

Числа 34, 46, 146 – чётные.

Нечётные числа – числа, не делящиеся на 2.

Числа 35, 47, 149 – нечётные.

Рассмотрим признак делимости на 9.

Если сумма цифр числа делится на 9, то и само число делится на 9.

Например, числа 153 делится на 9, а 155 не делится на 9.

Посчитаем сумму цифр числа 153:

1 + 5 + 3 = 9 – делится на 9.

Теперь число 153 представим в виде суммы сотен, десятков и единиц:

153 = 1 · 100 + 5 · 10 + 3 · 1.

Сделаем небольшое математическое преобразование и представим сумму в несколько ином виде:

153 = 1 · 100 + 5 · 10 + 3 · 1 = 1 · (99 + 1) + 5 · (9 + 1) + 3 · 1= = (1 · 99 + 5 · 9) + (1 + 5 + 3).

Числа в каждой из скобок делятся на 9, следовательно, число 153 делится на 9 – по свойству 3.

Как сказано ранее, число 155 не делится на 9, т. к. сумма цифр, из которых состоит число:

1 + 5 + 5 = 11 – не делится на 9.

Другое число 155 на 9 тоже не делится, т. к. при разложении числа на сумму сотен, десятков и единиц и дальнейшем небольшом математическом преобразовании, получается, что

155 = 1 · 100 + 5 · 10 + 5 · 1.

1 · (99 + 1) + 5 · (9 + 1) + 5 · 1 =

= (1 · 99 + 5 · 9) + (1 + 5 + 5).

В первых скобках сумма делится на 9, а во-вторых, скобках сумма цифр не делится на 9, следовательно, число 155 не делится на 9 – по свойству 4.

Рассмотрим признак делимости на 3.

Если сумма цифр делится на 3, то и само число делится на 3.

Например, на 3 делится числа 273, а и 274 не делится на три.

Посчитаем сумму цифр числа 273:

2 + 7 + 3 = 12 – делится на 3.

Теперь число 273 представим в виде суммы сотен, десятков и единиц:

273 = 2 · 100 + 7 · 10 + 3 · 1.

Сделаем небольшое математическое преобразование и представим сумму в несколько ином виде:

273 = 2 · 100 + 7 · 10 + 3 · 1 = 2 · (99 + 1) + 7 · (9 + 1) + 3 · 1= = (2 · 99 + 7 · 9) + (2 + 7 + 3).

Сумма в каждой из скобок делится на 3, следовательно, число 273 делится на 3 – по свойству 3.

Другое число 274 на 3 не делится, т. к. сумма цифр, из которых состоит число 274:

2 + 7 + 4 = 13 – не делится на 3.

Теперь разложим число двести семьдесят четыре на сумму сотен, десятков и единиц:

274 = 2 · 100 + 7 · 10 + 4 · 1.

Сделаем небольшое математическое преобразование и представим сумму в несколько ином виде.

274 = 2 · 100 + 7 · 10 + 4 · 1 = 2 · (99 + 1) + 7 · (9 + 1) + 4 · 1= = (2 · 99 + 7 · 9) + (2 + 7 + 4)

В первых скобках сумма делится на 3, а во-вторых, скобках сумма не делится на 3, следовательно, число 274 не делится на 3– по свойству 4.

Число делится на 4, если две последние его цифры нули или образуют число, делящееся на 4. В остальных случаях – не делится.

Например, рассмотрим, делятся ли на 4 числа 3312, 3300 и 3310.

Представим числа в виде суммы:

3312 = 3 · 1000 + 3 · 100 + 12 – каждое из этих чисел делится на 4, значит, по третьему свойству делимости число 3312 делится на 4.

3300 = 3 · 1000 + 3 · 100 – каждое из этих чисел делится на 4, значит, по третьему свойству делимости число 3300 делится на 4.

3310 = 3 · 1000 + 3 · 100 + 10 – третье слагаемое не делится на 4, следовательно, по четвёртому свойству делимости число 3310 не делится на 4.

Тренировочные задания

№ 1. Какую из цифр 2,0,3 нужно подставить в число 251*вместо звёздочки, чтобы оно делилось на 5?

Решение. Для решения достаточно вспомнить признак делимости на 5, т. е. на 5 делятся числа, оканчивающиеся цифрой 0 или 5. Т. к. пропуск стоит последней цифрой в числе, то нужно подставить из предложенных цифру 0.

Ответ: 0.

№ 2. Рассортируйте числа 213,490,252,481 на те, которые делятся на 3, и те, которые не делятся на 3.

Решение. Вспомним признак делимости на 3 –число делится на 3, если сумма всех его цифр делится на 3. Найдем сумму цифр всех чисел:

213 = 2 + 1 + 3= 6 – число делится на 3.

490 = 4 + 9 + 0 = 13 – число не делится на 3.

252 = 2 + 5 + 2 = 9 – число делится на 3.

481 = 4 + 8 + 1 = 13 – число не делится на 3.

Ответ: 213, 252 – делятся на 3.

490, 481 – не делятся на 3.