Конспект урока
Математика
5 класс
Урок № 44
Наименьшее общее кратное (НОК)
Перечень рассматриваемых вопросов:
– делители числа;
– кратные числа;
– признаки делимости;
– разложение на простые множители;
– НОК.
Тезаурус
Кратное число – это число, делящееся на данное целое число без остатка.
Простое число – это такое натуральное число, которое больше 1 и делится только на 1 и само на себя.
Составные числа – это непростые натуральные числа, большие 1.
Взаимно простые числа – это числа, которые не имеют общих простых делителей
Наименьшее общее кратное (НОК) двух натуральных чисел m и n – это наименьшее натуральное число, которое делится на m и n без остатка.
Обязательная литература
1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.
Дополнительная литература
1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
Ранее мы узнали, что такое кратное, ввели понятие делителя, научились находить наибольший общий делитель, а можно ли каким-либо способом найти общее кратное нескольких чисел? Оказывается, можно, этим сегодня мы и будем заниматься. Но находить не просто общее кратное нескольких чисел, а их наименьшее общее кратное – НОК.
Итак, для начала вспомним, что называется кратным. Это число, делящееся на данное натуральное число без остатка.
Теперь найдём, например, общие кратные чисел 12 и 15. Для этого выпишем все кратные чисел 12 и 15.
12 – его кратные 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, …
15 – его кратные 15, 30, 45, 60, 75, 90, 105, 120, 135, …
Из представленных чисел общие кратные – это числа 60 и 120. Меньшее из них – 60. Это и есть наименьшее общее кратное чисел.
Наименьшее общее кратное (НОК) двух натуральных чисел m и n – это наименьшее натуральное число, которое делится на m и n без остатка.
Для нахождения наименьшего общего кратного двух чисел можно использовать несколько способов. Один из них мы рассмотрели на примере нахождения НОК 12 и 15. Этот способ заключается в том, что выписываются все кратные двух чисел и затем находится наименьший общий из них.
Узнаем ещё одно правило нахождения НОК.
Во-первых, разложим числа на простые множители. Далее подчеркнём одинаковые множители этих чисел. Затем перемножим общие множители одного из чисел и добавим произведение всех остальных множителей от каждого числа. Это и будет НОК заданных чисел.
Найдём НОК (15; 16). Разложим числа на простые множители:
Видно, что из всех множителей общий лишь единица, значит, это взаимно простые числа.
НОК взаимно простых чисел – это произведение всех их множителей или произведение этих чисел.
В данном случае НОК равен 240.
Т. е. НОК любых двух простых чисел или двух соседних натуральных чисел будет равен произведению этих чисел.
Найдём НОК (10; 100). Разложим числа на простые множители:
Выделим общие делители у этих чисел, это 2 и 5.
Умножим их, а результат умножим ещё на оставшиеся простые множители от чисел 100 и 10.
НОК (10; 100) = 2 · 5 · 2 · 5 = 100
Обратите внимание на то, что 100 делится нацело на 10, и НОК тоже равен 100. Поэтому можно сделать вывод: если одно из двух чисел делится нацело на другое, то НОК этих чисел равен большему из них.
Некоторые задачи можно решить при помощи НОК проще, чем каким-либо другим способом. Например, рассмотрим такую задачу.
Девочка решила купить несколько плиток шоколада по 38 руб. , но у неё только 5-рублёвые монеты, а в магазине нет сдачи. Какое наименьшее количество плиток шоколада она сможет купить?
Решение: чтобы решить эту задачу, нужно найти НОК (5;38).
Разложим числа на множители:
Мы видим, что НОК (5; 38) = 5 · 38 = 190 – это будет сумма покупки за шоколад.
Теперь найдём, сколько девочка купит плиток.
Для этого сумму покупки разделим на стоимость одной плитки шоколада.
190 : 38 руб. = 5 – наименьшее количество плиток шоколада, которые сможет купить девочка.
Ответ: 5 плиток.
Тренировочные задания
№ 1. Какую цифру нужно подставить в число НОК (7; 2_) вместо пропуска, чтобы получить НОК = 21?
Варианты ответов: 1; 2; 3.
Решение: для решения этой задачи, надо разложить на множители оба числа, при этом вместо пропуска нужно подставить по порядку все цифры. А далее найти подходящий НОК этих чисел, равный 21.
Из всех разложений на множители под НОК (7; 2_) = 21 подходит только число 21.
НОК (7; 21) =21
НОК (7; 22) =154
НОК (7; 23) =161
Ответ: искомая цифра – 1.
№ 2. Какой наименьшей длины должен быть рулон ткани, чтобы от него без остатка можно было отрезать куски по 3 м и 7 м?
Решение: чтобы решить эту задачу, нужно найти НОК заданных чисел, он и будет являться искомым ответом, т. е. наименьшей длиной рулона ткани.
НОД (3; 7) = 7 · 3 = 21 м
Ответ: 21 м.