Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Поделиться:
Конспект урока

Алгебра

7 класс

Урок № 51

Обобщение и систематизация знаний по теме: «Линейные уравнения»

Перечень вопросов, рассматриваемых в теме:

Связь понятий: «линейное уравнение», система линейных уравнений», «линейная функция», «решение линейного уравнения», «решение системы линейных уравнений».

Способы решения систем линейных уравнений.

Тезаурус:

Уравнение вида ax = b, (где x – переменная, a, b – некоторые числа), называется линейным уравнением с одной переменной.

Система вида

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

(где x, y – переменные, ai, bi, ci – некоторые числа) называется системой линейных уравнений с двумя переменными.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Уравнение вида (где x – переменная, a, b – некоторые числа) называется линейным уравнением с одной переменной.

a и b – коэффициенты линейного уравнения.

К уравнению такого вида можно привести уравнение, которое включает в себя переменную в первой степени.

Пример:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Для того, чтобы привести уравнение к виду ax = b, нужно его преобразовать.

Пример.

Рассмотрим уравнение.

Раскроем скобки и приведём подобные слагаемые:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

В зависимости от значения коэффициентов, линейное уравнение может иметь либо один корень, либо ни одного корня, либо бесконечно много корней.

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Если уравнение включает в себя две переменные в первой степени, получаем линейное уравнение с двумя переменными:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Можно из данного равенства выразить переменную y.

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Получим уравнение линейной функции:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Её графиком является прямая. Таким образом, графиком линейного уравнения с двумя переменными является прямая, угловой коэффициент которой равен:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

На прямой лежит бесконечно много точек, поэтому линейное уравнение с двумя переменными имеет бесконечно много решений. Все пары точек, координаты которых удовлетворяют уравнению:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Или координаты точек, лежащих на прямой, соответствующей уравнению.

Рассмотрим два линейных уравнения с двумя переменными и составим из них систему.

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Геометрической интерпретацией решения системы двух уравнений с двумя переменными является точка пересечения прямых (если она есть).

Две прямые:

1) могут пересекаться (иметь одну общую точку), если их угловые коэффициенты не равны. В этом случае система имеет единственное решение.

Две прямые пересекаются, если:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

– система имеет единственное решение;

2) могут быть параллельными (не иметь ни одной общей точки), если их угловые коэффициенты равны, а свободные коэффициенты не равны. В этом случае система не имеет решений.

Две прямые параллельны, если:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

– система не имеет решений.

3) могут совпадать (иметь бесконечно много общих точек), если их угловые коэффициенты и свободные коэффициенты равны. В этом случае система имеет бесконечно много решений.

Две прямые совпадают, если:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Система имеет бесконечно много решений.

Для системы линейных уравнений могут быть использованы разные способы решения: алгебраический, в рамках которого рассматривается способ подстановки и способ алгебраического сложения. Или графический метод.

Рассмотрим пример.

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Заметим, что и первое, и второе уравнения включают в себя выражение (5x – 2y)

Во втором уравнении оно выражено. Его и подставим в первое уравнение:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Теперь первое уравнение зависит только от одной переменной x.

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Подставим найденное значение во второе уравнение и найдём значение y:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Ответ:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Текст для углублённого изучения.

Одним из простейших уравнений с параметром является линейное уравнение.

Рассмотрим уравнение с параметром:

a(a — 2)x = a2 — 4

Решение:

Рассмотрим коэффициент при переменной x.

Если: a(a – 2) ≠ 0, то есть уравнение имеет единственное решение.

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Рассмотрим те значения параметра a, при которых a(a – 2) = 0

Пусть a = 0, тогда получим уравнение: 0 · x = –4. Это уравнение решений не имеет.

Пусть a = 2, тогда получим уравнение: 0 · x = 0. Это уравнение имеет бесконечно много решений.

Запишем ответ:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

При a = 0 уравнение решений не имеет.

При a = 2 уравнение имеет бесконечно много решений.

Разбор решения заданий тренировочного модуля

Задача 1.

Рассортируйте уравнения по количеству их корней:

3x – 2(x + 5) = 6x – 12(2 – x)

15(1 – x) + 3 = 7 – 4x – 11(x – 1)

-5(2x + 4) = 5 – 10x

Решение.

Рассмотрим первое уравнение. Раскроем скобки:

3x – 2(x + 5) = 6x – 12(2 – x)

3х – 2х – 10 = 6х – 24 + 12х

Коэффициент при переменной не обратится в 0. Поэтому уравнение имеет единственное решение.

Рассмотрим второе уравнение. Раскроем скобки:

15(1 – x) + 3 = 7 – 4x – 11(x – 1)

15 – 15х + 3 = 7 – 4х – 11х + 11

18 – 15х = 18 – 15х

После преобразований получим уравнение 0x = 0, которое имеет бесконечно много корней.

Рассмотрим третье уравнение. Раскроем скобки:

-5(2x + 4) = 5 – 10x

-10х – 20 = 5 – 10х

Получим уравнение 0х = 25, которое не имеет решений.

Задача 2.

Выберите значения параметра, при каждом из которых уравнение не имеет решений:

Урок 51. Обобщение и систематизация знаний по теме «Линейные уравнения»

Решение.

Количество решений линейного уравнения зависит от коэффициента при переменной. Рассмотрим его.

Приравняем его к нулю: a(a2 – 9) = 0

Найдем значения параметра:

a = 0

a = 3

a = –3

При каждом из этих значений параметра уравнение имеет вид:

0 · x = k, где k ≠ 0

Поэтому при каждом из этих значений параметра уравнение решений не имеет.