Урок 6. Смежные и вертикальные углы. Аксиомы и теоремы

Поделиться:
Конспект урока

Геометрия

7 класс

Урок № 6

Смежные и вертикальные углы. Аксиомы и теоремы

Перечень вопросов, рассматриваемых в теме:

  • Понятие смежных и вертикальных углов
  • Свойства смежных и вертикальных углов
  • Отличие аксиомы от теоремы

Тезаурус

Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.

Свойства смежных углов:

  • Сумма смежных углов равна 1800.
  • Если два угла равны, то и смежные с ними углы равны.
  • Угол, смежный с прямым углом, есть прямой угол.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.

Свойство вертикальных углов: вертикальные углы равны.

Аксиома– положение, принимаемое без доказательств.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7 – 9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Погорелов А. В. Геометрия: 7 – 9 класс. // Погорелов А. В. – М.: Просвещение, 2017. – 224 с.

Теоретический материал для самостоятельного изучения

Давайте построим развёрнутый угол АОС и проведём в нём луч ОВ. В результате у нас получилось два угла ∠АОВ – острый угол и ∠ВОС– тупой угол. Стороны АО и ОС – продолжают друг друга, ВО– общая сторона. Углы АОВ и ВОС – это смежные углы. На основании этого сформулируем определение смежных углов.

Два угла, у которых одна сторона общая, а две другие являются продолжениями друг друга, называются смежными.

Урок 6. Смежные и вертикальные  углы. Аксиомы и теоремы

Обратите, внимание, что смежные углы АОВ и ВОС лежат на развёрнутом угле АОС. Отсюда можно сделать вывод: сумма смежных углов равна 180о.

Свойство смежных углов: сумма смежных углов равна 180о.

Давайте докажем это свойство.

Доказательство. Пусть углы ∠АОВ и ∠ВОС – смежные, луч ОВ – проходит между сторонами развёрнутого угла ∠АОС. Поэтому, сумма углов ∠АОВ и ∠ВОС равна ∠АОС, а этот угол развёрнутый, он равен 180о. Свойство доказано.

Укажем ещё одно свойство смежных углов.

  • Если два угла равны, то и смежные с ними углы равны.

Сейчас давайте вспомним определение прямого угла: угол, равный 900, называется прямым углом. Опираясь на свойство суммы смежных углов, можно сделать вывод: угол, смежный с прямым углом, есть прямой угол.

Урок 6. Смежные и вертикальные  углы. Аксиомы и теоремы

Теперь построим две пересекающиеся прямые, АС и BD. Посмотрите, при пересечении прямых у нас получилось четыре угла: ∠АОВ, ∠АОD, ∠CОD, ∠BОC. Из них попарно являются смежными углы: ∠АОВ и ∠АОD, ∠АОD и ∠CОD, ∠CОD и ∠BОC, ∠АОВ и ∠BОC.

Углы, которые не являются смежными:

∠АОВ и ∠CОD; ∠АОD и ∠BОC. Пары этих углов называются вертикальными углами.

Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого.

Свойство вертикальных углов: вертикальные углы равны. Убедимся в справедливости этого свойства, докажем его.

Урок 6. Смежные и вертикальные  углы. Аксиомы и теоремы

Доказательство. Посмотрим на чертёж: пары углов 1 и 2, 2 и 3, 3 и 4, 4 и 1– смежные углы. Угол 2 одновременно является смежным с углом 1 и с углом 3. По свойству смежных углов

∠1+ ∠2= 1800 и ∠3+ ∠2= 1800. Получаем, что ∠1+ ∠2= ∠3+ ∠2, значит, ∠1= ∠3. Углы ∠1 и ∠3 – вертикальные. Мы доказали справедливость этого свойства.

Свойства смежных и вертикальных углов, которые мы сегодня рассмотрели– в геометрии называются теоремами. Правильность утверждения о свойстве той или иной геометрической фигуры устанавливается путём рассуждения. Это рассуждение называется доказательством. А само утверждение, которое доказывается, называется теоремой.

На предыдущих уроках вы познакомились с понятием аксиомы.

В чём же различие между аксиомой и теоремой? Ответ на этот вопрос таков: аксиома – положение, принимаемое без доказательств.

Разбор решения заданий тренировочного модуля

№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.

Используя чертёж, найдите угол ∠ВОК.

Урок 6. Смежные и вертикальные  углы. Аксиомы и теоремы

Ответ: ∠ВОК=____0

Решение. Воспользуемся свойством смежных углов: сумма смежных углов равна 1800. По условию задачи ∠АОК= 110, то ∠ВОК+ ∠АОК= 1800

∠ВОК+ 110= 1800

∠ВОК= 1800– 110= 1690.

Ответ: ∠ВОК= 1690

№2. Тип задания: единичный / множественный выбор.

Используя чертёж, найдите угол ∠AOD.

Урок 6. Смежные и вертикальные  углы. Аксиомы и теоремы

Варианты ответов:

  1. 1120
  2. 640
  3. 1160
  4. 680

Решение. На чертеже указано, что углы ∠СОЕ= ∠DOE. Значит, ∠COD= ∠СОЕ+ ∠DOE= 320+ 320= 640. ∠AOD смежный с углом ∠COD, по свойству смежных углов: ∠AOD= 1800–∠COD= 1800– 640=1160.

Ответ: 1160

№3. Тип задания: выделение цветом.

Используя чертёж, найдите градусную меру угла ∠BMD, если ∠AMD= 1250, ∠BMC= 1150.

∠BМD=____0.

Выделите верный ответ из списка:

600; 300; 750; 900

Урок 6. Смежные и вертикальные  углы. Аксиомы и теоремы

Решение. По чертежу можно увидеть, что ∠BМD является частью ∠AMD и ∠BMC. Рассмотрим ∠DMC и ∠AMD. Эти углы – смежные, т.е. их сумма равна 1800. Значит, зная градусную меру ∠AMD, мы сможем найти градусную меру ∠DMC= 1800–∠AMD= 1800-–1250= 550. Теперь рассмотрим ∠BMC= ∠BMD+ ∠DMC. Мы знаем градусные меры ∠BMC и ∠DMC, значит, мы сможем найти градусную меру ∠BMD.

∠BMD= ∠BMC–∠DMC= 1150– 550= 600.

Верный ответ: 600