Урок 7. Конус

Поделиться:
Конспект урока

Геометрия, 11 класс

Урок №7. Конус

Перечень вопросов, рассматриваемых в теме:

  • коническая поверхность, образующая конической поверхности, её вершина, ось;
  • конус, основание конуса, вершина конуса, образующие конуса, ось конуса, высота конуса;
  • боковая поверхность конуса, полная поверхность конуса;
  • сечение конуса и его виды;
  • усечённый конус и его элементы.
  • площади поверхностей усеченного конуса.

Глоссарий по теме

Коническая поверхность – это поверхность, образованная прямыми, проходящими через все точки окружности, и точку, не лежащую в плоскости этой окружности.

Эти прямые – образующие конической поверхности.

Прямая, проходящая через центр окружности, перпендикулярно к плоскости – ось конической поверхности.

Конус– тело, ограниченное конической поверхностью, точкой и кругом.

Круг – основание конуса; точка — вершина конуса, отрезки образующих, заключённые между основанием и вершиной – образующие конуса; образованная ими часть конической поверхности – боковая поверхность конуса.

Ось конической поверхности называется осью цилиндра.

Расстояние от вершины до основания конуса называется высотой конуса, а радиус основания – радиусом конуса.

Сечение – изображение фигуры, образованной рассечением тела плоскостью.

Осевое сечение – вариант сечения, при котором плоскость проходит через ось тела.

Развёртка боковой поверхности конуса – сектор, радиус которого — образующая конуса, а длина дуги — длина окружности основания конуса.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия. 10–11 классы : учеб. для общеобразоват. организаций : базовый и углубл. уровни – М. : Просвещение, 2014. – 255, сс. 130-133.

Дополнительная литература:

Шарыгин И.Ф. Геометрия. 10–11 кл. : учеб. для общеобразоват. Учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 77-79.

Открытые электронные ресурсы:

Образовательный портал “Решу ЕГЭ”. https://mathb-ege.sdamgia.ru/test?theme=177

Теоретический материал для самостоятельного изучения

1. Основные определения

В плоскости 𝛂 построю окружность L с центром в точке О. Проведу прямую ОР перпендикулярно плоскости 𝛂. Соединю точку Р со всеми точками окружности L прямыми линиями. Поверхность, состоящую из этих прямых, называют конической поверхностью, сами прямые называют образующими конической поверхности, точку Р называют вершиной, а прямую ОР – осью конической поверхности.

Урок 7. Конус

Ввожу новые понятия конуса, основания конуса, вершины конуса, образующих конуса, боковой поверхности конуса, оси конуса и высоты конуса.

Определение

Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом.

Определение

Круг называют основанием конуса.

Определение

Вершину конической поверхности называют вершиной конуса.

Определение

Отрезки образующих, заключённые между вершиной и основанием называют образующими конуса, а образованная ими часть конической поверхности – боковой поверхностью конуса.

Определение

Ось конической поверхности называют и осью конуса, а её отрезок, заключённый между вершиной и основанием называют высотой конуса.

Отмечу, что все образующие конуса равны друг другу. Это легко доказать, если рассмотреть различные прямоугольные треугольники, в которых один катет – это высота конуса, а вторыми катетами являются радиусы основания конуса. Тогда образующие, являясь гипотенузами этих прямоугольных треугольников с равными катетами, также будут равны.

Конус можно получить ещё одним способом — вращением прямоугольного треугольника вокруг одного из катетов. Тогда этот катет (вокруг которого происходит вращение) будет совпадать с осью конуса и будет его высотой, гипотенуза станет образующей и будет образовывать боковую поверхность, а оставшийся катет образует основание, одновременно являясь его радиусом.

2. Сечения конуса различными плоскостями

  1. Пусть секущая плоскость проходит через ось конуса. Такое сечение называют осевым. Оно представляет собой равнобедренный треугольник, боковые стороны которого – образующие конуса, а его основанием является диаметр основания конуса.

Урок 7. Конус

  1. Если секущая плоскость перпендикулярна оси конуса, то сечение представляет собой круг с центром, расположенном на оси.

Урок 7. Конус

Это два основных вида сечения конуса, которые изучаются в средней школе на базовом уровне. Следует упомянуть, что существуют и другие сечения конусов, вид которых зависит от расположения секущей плоскости относительно оси.

3. Основные формулы

Формула для вычисления площади боковой поверхности конуса: Sбок=𝛑RL.

Площадь полной поверхности конуса: Sполн=𝛑R(R+L).

4. Усеченный конус

Если взять произвольный конус и провести секущую плоскость перпендикулярно его оси, то исходный конус разделится на две части. Верхняя часть представляет собой конус меньших размеров, а оставшуюся часть называют усечённым конусом.

Урок 7. Конус

Определение

Основание исходного конуса и круг, получившийся в сечении, называют основаниями усечённого конуса.

Определение

Отрезок, соединяющий центры оснований, называют высотой усечённого конуса.

Определение

Часть конической поверхности, ограничивающая усечённый конус, называется боковой поверхностью усечённого конуса.

Определение

Отрезки образующих, заключённые между основаниями, называются образующими усечённого конуса. Отмечу, что все образующие усечённого конуса равны друг другу.

Усечённый конус можно получить ещё одним способом — вращением прямоугольной трапеции вокруг той боковой стороны, которая перпендикулярна основанию.

Урок 7. Конус

Тогда эта сторона (вокруг которой происходит вращение) будет совпадать с осью конуса и будет его высотой, другая боковая сторона станет образующей и при вращении будет образовывать боковую поверхность, а основания трапеции станут соответственно радиусами верхнего и нижнего оснований усечённого конуса.

5. Формула для вычисления площадей поверхностей усеченного конуса

Sбок.пов.ук=π(r+R)L

S.полн.пов.ук=π(rL+RL+r2+R2)

Примеры и разбор решения заданий тренировочного модуля

1. Найти высоту конуса, если площадь его осевого сечения равна 6, а площадь основания равна 8.

Решение:

Сделаем чертеж:

SABC=6.

Его высота SO является высотой конуса.

SABC=SO·OB.

OB — радиус основания.

Его найдем из равенства: Sосн=πR2.

8= πR2.

R=Урок 7. Конус=Урок 7. Конус=OB.

Теперь найдем высоту:

6=SO·OB=SO·Урок 7. Конус.

Отсюда: SO=3Урок 7. Конус

Ответ: 3Урок 7. Конус.

2. Прямоугольная трапеция с основаниями 4 и 7 и меньшей боковой стороной 4 вращается вокруг меньшей стороны. Найдите элементы усеченного конуса.

Величина

Высота конуса

Образующая конуса

Радиус меньшего основания

Радиус большего основания

Площадь боковой поверхности конуса

Площадь осевого сечения

Площадь полной поверхности конуса

Решение:

Сделаем чертеж:

Трапеция ABCD вращается вокруг стороны AD.

Тогда:

AD – высота усеченного конуса, AD=4.

АВ – радиус меньшего основания, AB=4.

DC – радиус большего основания, DC=7.

Площадь боковой поверхности конуса вычислим по формуле: Sбок.пов.ук=π(r+R)L.

Для того чтобы найти площадь боковой поверхности, нужно найти образующую.

Ее найдем из треугольника BHC: BC=5 (это египетский треугольник).

Теперь найдем площадь боковой поверхности.

Sб.п. =π(4+7)·5=55π.

Площадь боковой поверхности равна 55π.

Осевое сечение представляет собой равнобедренную трапецию с основаниями 8 и 14 и высотой, равной 4.

Так что площадь этой трапеции равна: S=4(4+7)=44.

Для того чтобы найти площадь полной поверхности, нужно к площади боковой поверхности прибавить площади ее оснований.

Sп.п.=55π+16π+49π=120π.

Величина

Значение

Высота конуса

4

Образующая конуса

5

Радиус меньшего основания

4

Радиус большего основания

7

Площадь боковой поверхности конуса

55π

Площадь осевого сечения

44

Площадь полной поверхности конуса

120π