Урок 8. Перпендикулярность прямой и плоскости

Поделиться:
Конспект урока

Геометрия, 10 класс

Урок № 8 Перпендикулярность прямой и плоскости

Перечень вопросов, рассматриваемых по теме

  1. Ввести понятие перпендикулярных прямых в пространстве;
  2. Доказать лемму о перпендикулярности двух параллельных прямых;
  3. Решать задачи по теме.

Глоссарий по теме

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90Урок 8. Перпендикулярность прямой и плоскости. Перпендикулярные прямые могут пересекаться и могут быть скрещивающимися.

Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости.

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Основная литература:

Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Геометрия 10-11 кл. Базовый и профильный уровень. М.: Просвещение, 2015. С.1-10.

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 9 класса. Базовый и профильный уровень

Дополнительная литература:

Зив Б.Г. Геометрия. Дидактические материалы. 10-11 класс М.: Просвещение, 2015.

Открытые электронные ресурсы:

Перпендикулярность прямой и плоскости. http://school-collection.edu.ru // Единая коллекция цифровых образовательных ресурсов.

Перпендикулярность прямой и плоскости. https://www.yaklass.ru // Я-класс. Образовательный портал Сколково.

Теоретический материал для самостоятельного изучения

Лемма о перпендикулярности двух параллельных прямых к третьей прямой. Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к этой прямой..

Урок 8. Перпендикулярность прямой и плоскости

Доказательство:

Дано: a ‖ b, ⊥ c

Доказать: b ⊥ c

Через точку М пространства, не лежащую на данных прямых, проведем прямые МА и МС, параллельные соответственно прямым а и с. Так как а ⊥ с, то ∠АМС=90о.

Так как b ‖ a, а а ‖ МА, то b ‖ МА.

Итак, прямые b и с параллельны соответственно прямым МА и МС, угол между ними равен 90о, т.е. b ‖ МА, с ‖ МС, угол между МА и МС равен 90о

Это означает, что угол между прямыми b и с также равен 90о, то есть b ⊥ с. 

Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Урок 8. Перпендикулярность прямой и плоскости

Доказательство:

Дано: a ‖ а1, а ⊥ α

Доказать, что а1 ⊥ α

Проведем какую-нибудь прямую x в плоскости α, т.е. x ∊ α.Так как а ⊥ α, то а ⊥ x.

По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.

Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α

Теорема. Ели две прямые перпендикулярны плоскости, то они параллельны.

Урок 8. Перпендикулярность прямой и плоскости

Дано: а ⊥ α, b ⊥ α

Доказать, что а ‖ b

Доказательство:

Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.

М ∊ b, M ∊b1, b1 ‖ a. По предыдущей теореме b1 ⊥ α.

Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что а ‖ b. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, а ‖ b, т.е. b ∊ β, b1 ∊ β, α Урок 8. Перпендикулярность прямой и плоскости β = c (невозможно)→ а ‖ b

Признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.

Урок 8. Перпендикулярность прямой и плоскости

Теорема. Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

Урок 8. Перпендикулярность прямой и плоскости

Рис. 2.

Доказательство.

Пусть дана плоскость α и точка М (см. рис. 2). Нужно доказать, что через точку М проходит единственная прямая с, перпендикулярная плоскости α.

Проведем прямую а в плоскости α (см. рис. 3). Согласно доказанному выше утверждению, через точку М можно провести плоскость γ перпендикулярную прямой а. Пусть прямая b – линия пересечения плоскостей α и γ.

Урок 8. Перпендикулярность прямой и плоскости

Рис. 3.

В плоскости γ через точку М проведем прямую с, перпендикулярную прямой b.

Прямая с перпендикулярна b по построению, прямая с перпендикулярна а (так как прямая а перпендикулярна плоскости γ, а значит, и прямой с, лежащей в плоскости γ). Получаем, что прямая с перпендикулярна двум пересекающимся прямым из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая с перпендикулярна плоскости α. Докажем, что такая прямая с единственная.

Предположим, что существует прямая с1, проходящая через точку М и перпендикулярная плоскости α. Получаем, что прямые с и с1 перпендикулярны плоскости α. Значит, прямые с и с1 параллельны. Но по построению прямые с и с1пересекаются в точке М. Получили противоречие. Значит, существует единственная прямая, проходящая через точку М и перпендикулярная плоскости α, что и требовалось доказать.

Теоретический материал для углубленного изучения

Теорема о прямой перпендикулярной к плоскости. Через любую точку пространства проходит плоскость, перпендикулярная к данной прямой.

Урок 8. Перпендикулярность прямой и плоскости

Рис. 1.

Доказательство (см. рис. 1)

Пусть нам дана прямая а и точка М. Докажем, что существует плоскость γ, которая проходит через точку М и которая перпендикулярна прямой а.

Через прямую а проведем плоскости α и β так, что точка М принадлежит плоскости α. Плоскости α и β пересекаются по прямой а. В плоскости α через точку М проведем перпендикуляр MN (или р) к прямой а, Урок 8. Перпендикулярность прямой и плоскостиВ плоскости β из точки N восстановим перпендикуляр q к прямой а. Прямые р и q пересекаются, пусть через них проходит плоскость γ. Получаем, что прямая а перпендикулярна двум пересекающимся прямым р и q из плоскости γ. Значит, по признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости γ.

Примеры и разборы решения заданий тренировочного модуля

Пример 1

Выбор элемента из выпадающего списка

Урок 8. Перпендикулярность прямой и плоскости

Выпишите ребра, перпендикулярные плоскости (DCУрок 8. Перпендикулярность прямой и плоскости).

  • AD, A1D1, BC, B1C1
  • AD, AC, AD1,
  • ВС, ВА.

Правильный вариант/варианты (или правильные комбинации вариантов):

  • AD, A1D1, BC, B1C1

Неправильный вариант/варианты (или комбинации):

Все остальные

Подсказка: в кубе все углы по Урок 8. Перпендикулярность прямой и плоскости. Плоскость (DCУрок 8. Перпендикулярность прямой и плоскости), проходит через грань куба DCУрок 8. Перпендикулярность прямой и плоскости.

  • Разбор задания: Куб – это геометрическая фигура у которой все углы прямые, следовательно нужно увидеть ребра которые перпендикулярны к плоскости (DCУрок 8. Перпендикулярность прямой и плоскости), к грани куба (DDCУрок 8. Перпендикулярность прямой и плоскости).Эти ребра — AD, A1D1, BC, B1C1

Пример 2

Ребус – соответствия.

Закончите предложение, чтобы получилось верное утверждение.

Утверждение:

  • Две прямые называются перпендикулярными, если …..
  • Если плоскости перпендикулярна одной из двух параллельных прямых, то она ……

Варианты ответов:

  • Урок 8. Перпендикулярность прямой и плоскости
  • Урок 8. Перпендикулярность прямой и плоскости
  • параллельны
  • один
  • она перпендикулярна к любой прямой, лежай в этой плоскости.
  • перпендикулярна плоскости.

Правильный вариант/варианты (или правильные комбинации вариантов):

Две прямые называются перпендикулярными, если …

угол между ними равен 90Урок 8. Перпендикулярность прямой и плоскости

Если плоскость перпендикулярна одной из двух параллельных прямых, то она …

перпендикулярна и другой

Неправильный вариант/варианты (или комбинации):

Все остальные.

Подсказка:

Лемма: Если одна из двух параллельных прямых перпендикулярна к третьей прямой, то и другая прямая перпендикулярна к третьей прямой.

Теорема: если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.