Материалы для 8 класса

Список материалов:

Урок 5. Функция y=х² и её график

Конспект График функции – понятие в математике, которое даёт представление о геометрическом образе функции. Функция y = x2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит,…

Урок 4. Функция y = 1/x и её график

Конспект Графиком функции является множество точек , где x – любое действительное число, отличное от нуля. Построим график функции сначала для положительных значений х. Из свойства функции известно, что функция является непрерывной на всей области определения, поэтому отмеченные…

Урок 2. Функция y = x и её график

Конспект Зададим формулой функцию, заданную графически. График изображает биссектрису первого и третьего координатных углов. Можно предположить, что у этой функции ордината всегда равна абсциссе, например, заметим, что у точки А координаты (1; 1), у точки В координаты (2; 2), у точки С координаты (–1, –1).…

Урок 1. Понятие функции и графика функции

Конспект График функции – понятие в математике, которое даёт представление о геометрическом образе функции. Общее определение функции Пусть K – некоторое множество чисел и пусть каждому числу x из множества K в силу определённого закона (зависимости) поставлено в соответствие одно число y из множества T.…

Урок 34. Повторительно-обобщающий урок по теме «Окружность»

Напомним основные понятия и выводы теме «Окружность»Прямая, имеющая с окружностью только одну общую точку называется касательной к окружности.Общая точка прямой и окружности называется точкой касания. Отрезки касательных к окружности, проведенные…

Урок 33. Описанная окружность

Введем новое понятие: описанная окружность.Определение: если все вершины многоугольника лежат на окружности, то окружность называется описанной около многоугольника, а многоугольник – вписанным в эту окружность. На рисунке четырёхугольник MNKP вписан…

Урок 32. Вписанная окружность

КонспектРассмотрим окружность с центром в точке O и некоторым радиусом Проведем к этой окружности несколько касательных, которые попарно пересекаются. Соединим точки пересечения касательных отрезками. Если все стороны многоугольника касаются некоторой…

Урок 31. Теорема о пересечении высот треугольника

КонспектВспомним определение: Перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону, называется высотой треугольника. AH – высота треугольника ABC.Из курса 7 класса, мы знаем, что в любом треугольнике можно…

Урок 30. Свойство серединного перпендикуляра

КонспектРассмотрим отрезок АВ, найдем его середину, обозначим её точкой М. Через точку М проведём перпендикуляр к отрезку AВ. a — серединный перпендикуляр к ABСерединным перпендикуляром к отрезку АВ называется прямая,…

Урок 29. Свойство биссектрисы угла

КонспектБиссектрисой угла называется луч, исходящий из вершины и делящий угол пополам. AD — биссектриса угла BCAТеорема о биссектрисе углаТеорема: Каждая точка биссектрисы неразвернутого угла равноудалена от его сторон.Дано: ∠BAC, AD…

Урок 28. Свойства хорд окружности

Отрезок, соединяющий две точки окружности, называется ее хордой.Свойства хорд окружностиТеорема: Радиус, перпендикулярный к хорде, делит эту хорду пополам. Дано: окружность с центром O, AB – хорда, OC ⊥ ABДоказать: AM…

Урок 27. Теорема о вписанном угле

Угол, вершина которого находится на окружности, а стороны пересекают окружность, называется вписанным углом. ∠ABC – вписанный уголВписанный угол АВС опирается на дугу АС.Теорема о вписанном углеТеорема: Вписанный угол измеряется половиной…

Урок 25. Взаимное расположение прямой и окружности

КонспектРассмотрим окружность с центром в точке О и прямую a, её не пересекающую.Расстояние от центра окружности до прямой равно длине перпендикуляра ОВ. Это расстояние больше радиуса окружности.Будем перемещать прямую, параллельно…

Урок 24. Решение задач по теме «Соотношение между сторонами и углами прямоугольного треугольника»

Вспомним определения синуса, косинуса и тангенса острого угла прямоугольного треугольника.∆ABC, ∠C = 90°Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.cosA = AC/ABСинусом острого угла прямоугольного треугольника называется…

Урок 22. Косинус, синус и тангенс острого угла прямоугольного треугольника

Рассмотрим прямоугольный треугольник АВС Размеры катетов и гипотенузы следующиеAC = 12BC = 9AB = 15Разделим длину катета АС на длину гипотенузы АВAC/AB = 12/15 = 4/5 = 0,8Возьмем точку С1…

Урок 20. Практическое приложение подобия треугольников

КонспектВ романе Артура Конан Дойля «Белый отряд» лучники и копейщики стараются помочь своим друзьям, осажденным в горящей башне. Утром, когда солнце уже взошло, и башня отбрасывала тень, лучник собрал веревки…

Урок 19. Пропорциональные отрезки в прямоугольном треугольнике

КонспектТеорема: В прямоугольном треугольнике высота, проведенная из вершины прямоуго угла, разделяет треугольник на два подобных прямоугольных треугольника, каждый из которых подобен данному треугольнику. Дано: ∆ABC, ∠С=90°, CD⊥ABДоказать: ∆ACD ~ ∆ABC,…

Урок 18. Средняя линия треугольника

КонспектРассмотрим треугольник АВС. Отметим точку M – середину стороны АВ, точку N – середину стороны ВС. Отрезок, соединяющий середины двух сторон треугольника называется средней линией треугольника.Для любого треугольника и для…

Урок 17. Признаки подобия треугольников

Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.Процесс нахождения подобных треугольников можно упростить, зная признаки подобия треугольников.Первый признак подобия треугольников:Если два…

Урок 16. Определение подобных треугольников. Отношение площадей подобных фигур

Отношением отрезков AB и CD называется отношение их длин. Отрезки AB и CD пропорциональны отрезкам A1B1 и C1D1, если их отношения равны. AB/(A1B1) = CD/(C1D1)Выясним, пропорциональны ли отрезки на рисунке.…

Урок 14. Формула Герона

Выведем формулу, которая связывает площадь треугольника и длины его сторон. Рассмотрим треугольник ABC в котором известны его стороны. Обозначим их a, b, c. Для доказательства воспользуемся формулой для вычисления площади…

Урок 13. Теорема Пифагора.

Рассмотрим прямоугольный треугольник.Соотношение между катетами и гипотенузой было известно еще в Древнем Египте и Вавилоне. Сегодня нам это соотношение известно как теорема Пифагора. В современной формулировке теорема Пифагора звучит так:…

Урок 11. Площадь треугольника

Выведем формулу для вычисления площади треугольника и следствия из неё. Одну из сторон треугольника будем называть основанием. Например, сторону AC. Тогда высотой треугольника будем считать ту, которая проведена к основанию.…

Урок 10. Площадь параллелограмма

Выведем формулу для вычисления площади параллелограмма. Докажем, что площадь параллелограмма равна произведению его основания на высоту. Одну из сторон параллелограмма будем условно называть основанием. Перпендикуляр, проведенный из любой точки противоположной…