Конспект урока
Геометрия, 11 класс
Урок №12. Объемы прямой призмы и цилиндра
Перечень вопросов, рассматриваемых в теме
1) Доказательство теорем об объемах прямой призмы и цилиндра
2) Определение призмы, вписанной в цилиндр и призмы описанной около цилиндра
3) Решение задач на нахождение объемов прямой призмы и цилиндра
V=Sh объем прямой призмы и цилиндра
Основная литература:
Бутузов В. Ф., Кадомцев С. Б., Атанасян Л. С. и др. Геометрия. 10–11 классы : учеб.для общеобразоват. организаций : базовый и углубл. Уровни – М.: Просвещение, 2014. – 255, сс. 121-126.
Дополнительная литература:
Шарыгин И.Ф. Геометрия. 10–11 кл.: учеб.для общеобразоват. учреждений – М.: Дрофа, 2009. – 235, : ил., ISBN 978–5–358–05346–5, сс. 178-196.
Потоскуев Е.В., Звавич Л. И., Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2004. – 368 с.: ил., ISBN 5–7107–8310–2, сс. 5-30.
Открытые электронные:
Образовательный портал “Решу ЕГЭ”. https://mathb-ege.sdamgia.ru/test?theme=177
Теоретический материал для самостоятельного изучения
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.
Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания, откуда следует, что все боковые грани являются прямоугольниками
Объем всякого цилиндра равен произведению площади основания на высоту
Объем призмы — это произведение площади ее основания на высоту
Призма вписана в цилиндр, если ее основания вписаны в основания цилиндра.
Призма описана около цилиндра, если ее основания описаны около оснований цилиндра.
Высота любой призмы (вписанной в цилиндр или описанной около цилиндра), равна высоте самого цилиндра
Примеры и разбор решения заданий тренировочного модуля
№1. Найти объем прямой треугольной призмы высотой 6, в основании которой — прямоугольный треугольник с катетами 3 и 7.
Решение: Объем призмы вычисляется по формуле , т.к. в основании призмы – прямоугольный треугольник, то объем призмы будет вычисляться по формуле , где а и в – катеты треугольника. Подставляя все данные задачи в формулу, получаем ответ: .
№2. Найти объём правильной -угольной призмы, у которой каждое ребро равно а, если: а) n=3, б) n=4, в) n=6.
Решение: поскольку призма правильная, значит, это прямая призма и в основании лежит правильный многоугольник.
Формулу для вычисления объёма прямой призмы мы только что вывели . Поскольку, по условию все ребра призмы равны a, значит, высота призмы равна h=a. Осталось найти площадь основания.
Основанием правильной треугольной призмы является правильный, то есть равносторонний треугольник n=3. Площадь правильного треугольника со стороной f вычислить несложно, она равна .
Применяя формулу для вычисления объёма прямой призмы, получим, что объём правильной треугольной призмы равен .
Основанием правильной четырёхугольной призмы является квадрат n=4. Площадь квадрата со стороной a равна . Тогда объём правильной четырёхугольной призмы равен .
Основанием правильной шестиугольной призмы является правильный шестиугольник n=6. Своими большими диагоналями шестиугольник делится на 6 равносторонних треугольников. Площадь каждого из треугольников равна , значит, площадь правильного шестиугольника равна . Тогда объём правильной шестиугольной призмы равен .
Ответ 3/2 ед3
№3 Найди объём прямой призмы если =120°, АВ=5 см, ВС=3см и наибольшая из площадей боковых граней равна 35см2 .
Решение: боковая грань прямой призмы является прямоугольником.
Площадь каждой боковой грани равна произведению высоты призмы на сторону основания.
То есть большая боковая грань содержит большую сторону основания.
По условию =120°, – тупой, а поскольку напротив большей стороны лежит больший угол, то большей стороной основания будет сторона АС. Вычислим длину стороны АС по теореме косинусов.
Получим, что длина стороны АС=7см.
Зная большую сторону основания и площадь наибольшей боковой грани призмы, длину высоты призмы вычислить нетрудно.
Получим, что длина высоты призмы равна .
Для нахождения объёма призмы, воспользуемся только что доказанной формулой . Площадь основания можно найти либо по формуле Герона , либо по формуле .
Мы воспользуемся второй формулой. Получим, что площадь основания равна .
Тогда объём прямой призмы равен .
Ответ 75/4 см3