Конспект урока
Геометрия, 10 класс
Урок №17. Вектор в пространстве
Перечень вопросов, рассматриваемых в теме:
знакомство с правилами действий с векторами в пространстве.
— познакомиться с основными понятиями, используемыми в данной теме;
— сформировать представление о векторных и скалярных величинах;
— научиться выполнять действия с векторами, преобразовывать векторные выражения.
учащиеся научатся различать векторные и скалярные величины, выполнять действия с векторами в пространстве и применять законы действий с векторами для преобразования и упрощения векторных выражений.
Сортировка по категориям скалярных и векторных величин. Отличительные особенности векторных величин. Повторяется определение вектора из курса планиметрии.
Основная литература:
Атанасян Л.С. и др. Геометрия. Учебник для 10-11классов — М.: Просвещение, 2017. C. 77-85.
Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса2016. С.88-93.
Теоретический материал для самостоятельного изучения:
1)Вектором называется отрезок, для которого указано, какой из его концов считается началом, а какой — концом.
КК — нулевой вектор, обозначается . Длина вектора обозначается ||.
2)Два ненулевых вектора называются коллинеарными, если они лежат на одной или на параллельных прямых. Пусть два ненулевых вектора и коллинеарные. Если при этом лучи АВ и СD сонаправлены, то и называются сонаправленными, а если эти лучи не являются сонаправленными, то векторы и называются противоположно направленными.
Нулевой вектор условимся считать сонаправленным с любым вектором. Запись означает, что векторы и сонаправлены, а запись — что векторы с и d противоположно направлены.
3)Векторы называются равными, если они сонаправлены и их длины равны. От любой точки можно отложить вектор, равный данному, и притом только один.
Интерактивная модель «Равные, противоположные, нулевые, сонаправленные, противоположно направленные векторы «.
4)Действия над векторами. Сложение векторов по правилу треугольника.
Для этого нужно от произвольной точки пространства отложить вектор , равный , затем от точки В отложить вектор , равный . Вектор называется суммой и . Для любых трех точек А, В и С имеет место равенство +=
5)Сложение векторов по правилу параллелограмма:
Для этого векторы откладывают от одной точки. Это правило пояснено на рисунке.
Интерактивная модель «Законы действия с векторами».
Сумма нескольких векторов в пространстве находится так же, как и на плоскости и не зависит от порядка слагаемых.
Интерактивная модель «Правило многоугольника».
6)Два ненулевых вектора называются противоположными, если их длины равны и они противоположно направлены.
7)Вычитание векторов: Разностью векторов и называется такой вектор, сумма которого с вектором равна вектору .
Разность — можно найти по формуле — = + (-), где (-) — вектор, противоположный вектору .
—=.
8)Умножение вектора на число. Произведением ненулевого вектора на число k называется такой вектор , длина которого равна |k|·||, причем векторы и сонаправлены при k0 и противоположно направлены при k<0. Произведением нулевого вектора на произвольное число считается нулевой вектор.
Произведение вектора на число k обозначается так: k. Из определения произведения вектора на число следует, что для любого числа k и любого вектора векторы и k коллинеарны. Из этого же определения следует, что произведение любого вектора на число нуль есть нулевой вектор.
Для любых векторов , и любых чисел k, l справедливы равенства:
(kl) = k(l) (сочетательный закон);
k( + ) = k + k (первый распределительный закон);
(к+l) = k + l (второй распределительный закон).
Лемма. Если векторы и коллинеарны и вектор не равен нулевому вектору, то существует число k такое, что вектор равен k.
Интерактивная модель «Законы действия с векторами».