Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Поделиться:
Конспект урока

Геометрия

7 класс

Урок № 24

Соотношения между сторонами и углами треугольника. Неравенство треугольника

Перечень рассматриваемых вопросов:

  • Установление соотношений между сторонами и углами треугольника.
  • Формулирование неравенства треугольника.
  • Теоремы о сравнении сторон и углов треугольника, их применение при решении задач.
  • Проведение исследования о существовании треугольника с заданными элементами.

Тезаурус

Каждая сторона треугольника меньше суммы двух других сторон.

В треугольнике против большей стороны лежит больший угол. Против большего угла лежит большая сторона.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Ранее, на уроках геометрии, вы познакомились с различными фигурами, в том числе и с треугольником.

Сегодня мы продолжим изучать треугольники и рассмотрим соотношение между его элементами.

Теорема: В треугольнике против большей стороны лежит больший угол.

Дано: ∆АВС.

AB > AC.

Доказать:

∠С > ∠В

Доказательство:

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Отложим на стороне AB отрезок, равный стороне AC.

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Так как AD < AB, то точка D лежит между точками A и B.

Следовательно, угол 1 является частью угла C и, значит,

∠C > ∠1.

Угол 2 – внешний угол треугольника BDC, поэтому ∠2 > ∠B (по свойству внешнего угла треугольника).

∠1 = ∠2 как углы при основании равнобедренного ∆ADC (по свойству равнобедренного треугольника).

→∠C > ∠1, ∠1 = ∠2, ∠2 > ∠B →∠C > ∠B.

Теорема доказана.

Справедлива и теорема, обратная данной. Против большего угла лежит большая сторона.

Дано: ∆АВС.

∠С > ∠В

Доказать:

AB > AC.

Доказательство:

Предположим, что АВ = АС или АВ < АС. Если АВ = АС → ∆АВС – равнобедренный (по определению равнобедренного треугольника) →∠С = ∠В (по свойству равнобедренного треугольника). Что противоречит условию, т. к. ∠С > ∠ В.

Если АВ < АС → ∠С < ∠В (по теореме доказанной выше: против большей стороны лежит больший угол) Что противоречит условию, т. к. ∠С > ∠В.

Поэтому наше предположение неверное → AB > AC.

Теорема доказана.

Докажем два следствия из этих теорем.

1 следствие. В прямоугольном треугольнике гипотенуза больше катета.

Дано: ∆АВС – прямоугольный.

∠В = 90°

Доказать: АС > СВ.

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Доказательство: ∠В > ∠А, т. к. ∠В = 90° ( по условию), ∠А –острый → АС > СВ (по обратной теореме о соотношениях между сторонами и углами треугольника: против большего угла лежит большая сторона).

Что и требовалось доказать.

Докажем второе следствие из этих теорем.

2 следствие:

Если два угла треугольника равны, то треугольник равнобедренный. Это следствие называется признак равнобедренного треугольника.

Дано: ∆АВС

∠А = ∠С

Доказать: ∆АВС – равнобедренный

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Доказательство:

Докажем, что АВ = ВС.

Пусть АВ > ВС →∠С > ∠А (по теореме доказанной выше: против большей стороны лежит больший угол), противоречит условию, т. к. ∠А = ∠С . → АВ = ВС →∆АВС – равнобедренный (по определению равнобедренного треугольника).

Что и требовалось доказать.

Докажем теорему по соотношению между сторонами треугольника.

Теорема:

Каждая сторона треугольника меньше суммы двух других сторон.

Дано:

АВС

Доказать: АВ < АС + СВ.

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Доказательство:

Продолжим сторону AC и отложим отрезок CD = BC.

∆BCD – равнобедренный (по определению равнобедренного треугольника) →∠1 = ∠2 (по свойству равнобедренного треугольника).

В ∆ABD: ∠ABD > ∠1 (так как угол 1 часть угла АВD), →∠ABD > ∠2 (так как ∠1 = ∠2).

Так как против большего угла лежит большая сторона (по теореме о соотношениях между сторонами и углами треугольника) → AB < AD, AD = AC + CD, т.к. CD = BC, поэтому AD = AC + CВ → AB < AC + СВ.

Что и требовалось доказать.

Сформулируем следствие из этой теоремы.

Для любых трёх точек A, B и C, не лежащих на одной прямой, справедливы неравенства: AB < AC + CB, AC < AB + BC, BC < BA + AC.

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Решим задачу на доказательство, используя теоремы о соотношениях между углами и сторонами треугольника.

Докажем, что в произвольном треугольнике, если медиана и высота проведены из одной вершины, то эта медиана не меньше высоты, проведённой из то же вершины.

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Дано: ∆АВС.

ВМ – медиана,

ВН – высота.

Доказать: ВМВН.

Доказательство:

Рассмотрим случай, когда АВВС. То ВМ и ВН не совпадают (т. к. по свойству равнобедренного треугольника, высота и медиана совпадают, если проведены к его основанию).

Рассмотрим ∆ВНМ – прямоугольный (по определению прямоугольного треугольника), т. к. ∠Н = 90°, при этом угол в 90° единственный в данном треугольнике (по теореме о сумме углов треугольника) → ∠Н – самый большой → ВМ > ВН (по обратной теореме о соотношениях между сторонами и углами треугольника).

Рассмотрим ещё случай АВ = ВС → ∆АВС – равнобедренный (по определению равнобедренного треугольника). То ВМ = ВН (по свойству равнобедренного треуголника, высота и медиана совпадают, если проведены к его основанию)→ ВМВН.

Что и требовалось доказать.

Разбор заданий тренировочного модуля.

1 Дано: ABC, равнобедренный, вычислите чему равна третья сторона треугольника, если две других равны 8 см и 4 см?

Объяснение: По определению равнобедренного треугольника, две его боковые стороны равны, следовательно это будет сторона равная 4 см или 8см.

Сторона 4см не может быть, т. к. 8см = 4 см + 4 см., что противоречит теореме о соотношениях между сторонами треугольника: каждая сторона треугольника меньше суммы двух других сторон.

Предположим, что боковые стороны равны 8 см. Тогда, по теореме о соотношениях между сторонами треугольника, каждая сторона треугольника меньше суммы двух других сторон, получим следующее соотношение между сторонами треугольника:

4 см < 8 см + 8 см

8 см < 8 см + 4 см.

Соотношение верно, следовательно, третья сторона равна 8 см.

Ответ: третья сторона равна 8 см.

2. Дано: ∆АВК – равнобедренный, ВК – основание треугольника, его периметр равен 29 см, разность двух сторон равна 5 см, при этом один из его внешних углов – острый. Найдите длину боковой стороны АВ и основания ВК.

Объяснение: т. к. по условию, один из внешних углов острый, то один из внутренних углов будет тупым, а это может быть, в равнобедренном треугольнике, только вершина над основанием треугольника (следствие из теоремы о сумме углов треугольника). → Основание ВК – самая длинная сторона треугольника АВК (по теореме о соотношении между углами и сторонами треугольника). → ВКАВ = 5 см →ВК = 5см + АВ.

По определению равнобедренного треугольника, две его боковые стороны равны → АВ = АК. Периметр треугольника – сумма длин трёх его сторон.

Урок 24. Соотношения между сторонами и углами треугольника. Неравенство треугольника

Р∆АВК = АВ + АК + ВК = 29 см (по условию).

2АВ + ВК = 29 см

2АВ +5см + АВ = 29 см

3АВ = 24 см

АВ = 8 см, ВК = 8 + 5 =13 см.

Ответ: ВК = 13 см; АВ = 8 см.