Урок 26. Простейшие дифференциальные уравнения

Поделиться:
Конспект урока

Алгебра и начала математического анализа, 11 класс

Урок №26. Простейшие дифференциальные уравнения.

Перечень вопросов, рассматриваемых в теме

1) Нахождение области применения дифференциальных уравнений

2) Определение дифференциального уравнения

3) Решение простейших дифференциальных уравнений

Таблица первообразных.

Функция f(x)

Первообразная F(x)

0

C = const

1

x + C

Урок 26. Простейшие дифференциальные уравнения

Урок 26. Простейшие дифференциальные уравнения

Урок 26. Простейшие дифференциальные уравнения

Урок 26. Простейшие дифференциальные уравнения

cos x

sin x + C

sin x

-cos x + C

Урок 26. Простейшие дифференциальные уравнения

Урок 26. Простейшие дифференциальные уравнения

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке Х, если для Урок 26. Простейшие дифференциальные уравнения выполняется равенство F’ (x) = f(x).

Дифференциальным уравнением называется соотношение, связывающее независимую переменную х, искомую функцию y = f(x) и ее производные.

Порядок старшей производной, входящей в дифференциальное уравнение, называется порядком данного уравнения. ( Пример: y’ – y = 0 – дифференциальное уравнение 1-го порядка; y’’ + y = 0 – дифференциальное уравнение 2-го порядка).

Решением дифференциального уравнения называется любая функция y = f(x), которая при подстановке в это уравнение обращает его в тождество.

Примеры и разбор решения заданий тренировочного модуля

№1. Тело движется по оси абсцисс, начиная движение от точки А(10; 0) со скоростью v=4t+4 Найдите уравнение движения тела, и определите координату х через 1 с

Решение

Воспользуемся определением первообразной, т.к. х(t)=v0t+at2/2

х’(t) = v(t) .

Найдем все первообразные функции 4t+4

х(t)= 4t+2t2 +c.

При этом с=10, т.к. это есть начальная координата тела из условия задачи.

Следовательно, закон движения будет выглядеть следующим образом:

х=2t2+4t+10

Подставим t=1c в данное уравнение и найдем координату тела за данное время х = 2+4+10=16

Ответ: х=2t2+4t+10

№2. Найдите c при частном решении, у’ = x, если при х = 1 у = 0 .

Решение:

 Найдем все первообразные уравнения у’ , это будет общее решение уравнения : Урок 26. Простейшие дифференциальные уравнения

Найдем число С , такое х = 1 у = 0 .

Подставим х = 1, y = 0 , в общее решение и получим:

0=(1)2/2 +с

С=-1/2

Ответ с = -0,5

№3. Используя уравнение у'(x)= 4х+5, найди его решение и определи число С, если у(-2)=10

Решение

Найдем все первообразные функции 4х+5

Урок 26. Простейшие дифференциальные уравнения

Найдем число С , такое, у(-2)=10

Подставим х = – 2, y = 10 , получим:

10=(-2)2 +5(-2)+с

С=12

Следовательно, у=5х +2х2 +12 ,

Ответ: у=5х +2х2 +С, где С= 12