Урок 44. Показательные и логарифмические уравнения и неравенства с двумя переменными

Поделиться:
Конспект урока

Алгебра и начала математического анализа, 11 класс Урок №44. Показательные и логарифмические уравнения и неравенства.

Перечень вопросов, рассматриваемых в теме

1) показательные уравнения и неравенства;

2) логарифмические уравнения и неравенства;

3) системы уравнений.

Глоссарий по теме

Показательными называются уравнения и неравенства, у которых переменная содержится в показатели степени.

Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Вы уже умеете решать все виды уравнений и неравенств. Наша задача обобщить изученное, привести знания в систему. Начнем с показательных уравнений.

Показательные уравнения

aх=b. где a>0, a≠1

Если b>0, уравнение имеет один корень: x=loga b. График функции y=ax пересекает прямую y=b в одной точке.

Если b≤0 корней нет. График функции y=ax не пересекает прямую y=b.

Урок 44. Показательные и логарифмические уравнения и неравенства с двумя переменными

При решении неравенств, обращаем внимание на основание. Если а>0, знак неравенства сохраняется. Если а<0, знак неравенства меняется.

Логарифмические уравнения

logax=b , где a>0, a≠1.

Логарифмическое уравнение logax=b имеет один положительный корень x=ab при любом значении b.

График функции пересекает прямую y=b в одной точке.

Урок 44. Показательные и логарифмические уравнения и неравенства с двумя переменными

Уравнение имеет один положительный корень x=ab при любом b. График функции у= logax пересекает прямую y=b в одной точке.

При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.

Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.

1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.

2 прием. Замена переменных.

Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.

При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Решить уравнение:

lg(x+1)+lg(x-1)=lg3

lg(x+1)(x-1)=lg 3

x2-1=3

x2=4

х1=2 х2= -2

При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.

Пример 2. Найти значение выражения (х+у). x

lg x+lg y =2 x

Найдем область определения: х>0, у>0.

  1. lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200
  2. сложим два уравнения: х2+2ху+у2=425+200=625 ↔ (х+у)2=625

значит х+у =25 с у четом ОДЗ. Ответ: 25