Конспект урока
Алгебра и начала математического анализа, 11 класс Урок №44. Показательные и логарифмические уравнения и неравенства.
Перечень вопросов, рассматриваемых в теме
1) показательные уравнения и неравенства;
2) логарифмические уравнения и неравенства;
3) системы уравнений.
Глоссарий по теме
Показательными называются уравнения и неравенства, у которых переменная содержится в показатели степени.
Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма.
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Вы уже умеете решать все виды уравнений и неравенств. Наша задача обобщить изученное, привести знания в систему. Начнем с показательных уравнений.
Показательные уравнения
aх=b. где a>0, a≠1
Если b>0, уравнение имеет один корень: x=loga b. График функции y=ax пересекает прямую y=b в одной точке.
Если b≤0 корней нет. График функции y=ax не пересекает прямую y=b.
При решении неравенств, обращаем внимание на основание. Если а>0, знак неравенства сохраняется. Если а<0, знак неравенства меняется.
Логарифмические уравнения
logax=b , где a>0, a≠1.
Логарифмическое уравнение logax=b имеет один положительный корень x=ab при любом значении b.
График функции пересекает прямую y=b в одной точке.
Уравнение имеет один положительный корень x=ab при любом b. График функции у= logax пересекает прямую y=b в одной точке.
При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.
Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.
1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.
2 прием. Замена переменных.
Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.
При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Решить уравнение:
lg(x+1)+lg(x-1)=lg3
lg(x+1)(x-1)=lg 3
x2-1=3
x2=4
х1=2 х2= -2
При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.
Пример 2. Найти значение выражения (х+у). x
lg x+lg y =2 x
Найдем область определения: х>0, у>0.
- lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200
- сложим два уравнения: х2+2ху+у2=425+200=625 ↔ (х+у)2=625
значит х+у =25 с у четом ОДЗ. Ответ: 25