Конспект урока
Математика
5 класс
Урок № 71
Понятие смешанной дроби
Перечень рассматриваемых вопросов:
– введение понятий «смешанная дробь», «целая часть смешанной дроби», «дробная часть смешанной дроби»;
– правило преобразования неправильных дробей в смешанные дроби;
– правило преобразования смешанных дробей в неправильные дроби;
– отработка правил преобразования неправильных и смешанных дробей;
– сравнение смешанных дробей.
Тезаурус
Правильная дробь – дробь, числитель которой меньше знаменателя.
Неправильная дробь – дробь, числитель которой больше знаменателя.
Смешанная дробь – сумма натурального числа и правильной дроби, записанная без знака плюс;
Целая часть смешанной дроби – натуральное число в смешанной дроби.
Дробная часть смешанной дроби – правильная дробь в смешанной дроби.
Обязательная литература
- Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.
Дополнительная литература
- Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.
Теоретический материал для самостоятельного изучения
Вы уже знакомы с обыкновенными дробями. Умеете выполнять с ними все арифметические действия. Знаете, что обыкновенные дроби бывают правильными – это те дроби, числитель которых меньше знаменателя, и неправильными – дроби, у которых числитель больше знаменателя.
Если числитель неправильной дроби делится на знаменатель без остатка, то такая неправильная дробь равна частному от деления числителя на знаменатель.
Сумму натурального числа три и правильной дроби две пятых, записанную сокращённо, без знака плюс, называют смешанной дробью.
Натуральное число «три» в смешанной дроби «три целых две пятых» называют целой частью, а правильную дробь «две пятых» – дробной частью смешанной дроби.
Чтобы правильно назвать дробную часть смешанной дроби поступаем так: называя числитель, отвечаем на вопрос: «сколько долей взято?» – две. Называя знаменатель, отвечаем на вопрос: «две каких?» – пятых.
Научимся записывать неправильные дроби, числитель которых не делится на знаменатель нацело, в виде смешанных дробей.
Каждую смешанную дробь можно представить в виде неправильной дроби.
Для этого надо:
• знаменатель дробной части умножить на целую часть,
• прибавить к этому числу числитель дробной части,
• полученное число записать в числитель искомой неправильной дроби,
• знаменатель оставить прежним.
Так как у этих дробей целые части одинаковые, то сравнивать мы будем дробные части. Но дробные части данных дробей имеют разные знаменатели. Чтобы сравнить дроби с разным знаменателем, нужно привести их сначала к общему знаменателю. Меньшей из них будет та дробь, числитель которой меньше.
А можно ли сравнить эти дроби, не приводя их к общему знаменателю? Можно. И даже не одним способом.
Тренировочные задания
Преобразуем каждую смешанную дробь в неправильную, пользуясь правилом:
– знаменатель умножить на целую часть,
– прибавить его к дробной части,
– полученное число записать в числитель,
– знаменатель останется прежним.
Для того чтобы выбрать равные дроби, нужно привести их к одинаковому виду: или все дроби сделать неправильными, или все дроби – смешанными.
Преобразуем первые четыре неправильные дроби в смешанные числа.