Урок 72. Сложение смешанных дробей

Поделиться:
Конспект урока

Математика

5 класс

Урок № 72

Сложение смешанных дробей

Перечень рассматриваемых вопросов:

– сложение смешанной дроби с целым числом;

– сложение смешанной дроби с правильной дробью;

– сложение смешанных дробей с общим знаменателем;

– сложение смешанных дробей с разными знаменателями;

– преобразование неправильных дробей в смешанное число.

Тезаурус

Смешанная дробь – сумма натурального числа и правильной дроби, записанная без знака плюс.

Целая часть смешанной дроби – натуральное число в смешанной дроби.

Дробная часть смешанной дроби – правильная дробь в смешанной дроби.

Переместительное свойство сложения – от перестановки слагаемых местами сумма не меняется.

Сочетательное свойство сложения – чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего чисел.

Порядок убывания – расположение элементов от большего к меньшему.

Порядок возрастания – расположение элементов от меньшего к большему.

Обязательная литература

1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Ранее мы говорили, что смешанная дробь – это сумма натурального числа и правильной дроби. При сложении смешанных дробей используют законы сложения. Рассмотрим это на примере:

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

Каждую смешанную дробь представим, как сумму целой и дробной части.

Вспомним переместительное свойство сложенияот перестановки слагаемых местами сумма не меняется. Перегруппируем слагаемые. Запишем сначала сумму целых частей, а затем сумму дробных частей. Сложим отдельно целые и дробные части обеих дробей. Полученную сумму запишем смешанной дробью, то есть уберём знак плюс между натуральным числом и правильной дробью.

Урок 72. Сложение смешанных дробей

Для удобства будем считать, что у каждого натурального числа есть дробная часть, равная нулю, а у каждой правильной дроби есть целая часть, равная нулю. С учётом этого складывать натуральные числа и правильные дроби со смешанными дробями можно по тому же правилу.

Например:

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

Проведём те же преобразования, что и в предыдущем примере: отдельно сложим целые и дробные части обоих чисел. Запишем сумму целой и дробной части в виде смешанной дроби, т. е. без знака плюс.

Рассмотрим пример, в котором к смешанной дроби прибавляют простую дробь.

Урок 72. Сложение смешанных дробей

Отдельно складываем целые части и дробные части. Сумму натурального числа и дроби записываем смешанным числом, т. е. без знака плюс.

При сложении двух смешанных дробей сумма дробных частей может оказаться неправильной дробью. Посмотрим на примере, как действовать в таком случае.

Урок 72. Сложение смешанных дробей

Сумма дробных частей получилась равной семи пятым. Преобразуем неправильную дробь в смешанную. Семь пятых – это одна целая и две пятых. С учётом этого сумма данных смешанных чисел равна четырём целым и двум пятым.

Если необходимо сложить смешанные дроби, дробные части которых имеют разные знаменатели, то сначала нужно привести дробные части к общему знаменателю, а потом выполнить сложение.

Урок 72. Сложение смешанных дробей

Общий знаменатель дробных частей равен пятнадцати. Сумма будет равна семи целым тринадцати пятнадцатым. Обратите внимание на запись решения данного примера. Здесь уже нет промежуточных вычислений сумм целых и дробных частей. Записывать эти вычисления не нужно, достаточно понимать последовательность своих действий.

Рассмотрим ещё одно выражение:

Урок 72. Сложение смешанных дробей

В этом выражении у обоих слагаемых есть и целая, и дробная части. Дробные части имеют различные знаменатели. Приводим дробные части к общему знаменателю. Отдельно складываем целые и дробные части, не записывая это подробно. Сумма дробных частей оказалась равной сорока трём тридцатым, это неправильная дробь. Преобразуем её в смешанную дробь. Сорок три тридцатых – это одна целая тринадцать тридцатых. Выполним сложение семи и одной целой тринадцати тридцатых. Получим восемь целых тринадцать тридцатых.

Вычислим:

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

При решении этого выражения можно выполнить действия по порядку: сначала найти суммы в скобках, затем сложить полученные суммы.

В этом случае нам придётся приводить дроби к общему знаменателю. Выполним это решение:

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

Можно решить это выражение другим способом, вспомнив сочетательный и переместительные свойства сложения:

Урок 72. Сложение смешанных дробей

Во втором случае решение получилось короче, нам не пришлось приводить дроби к общему знаменателю.

Сегодня мы рассмотрели сложение смешанных дробей с натуральными числами, правильными дробями и смешанными дробями. Во всех этих случаях мы действовали по одному правилу: отдельно складывали целые и дробные части слагаемых, а затем складывали полученные результаты.

Тренировочные задания

№ 1. Выберите выражения, в решении которых допущены ошибки или решение не доведено до верного ответа:

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

В первом выражении приведено полное, верное решение: отдельно сложены целые и дробные части смешанных дробей. Дробные части приведены к общему знаменателю. Сумма дробных частей оказалась неправильной дробью, эта дробь правильно преобразована в смешанную дробь. Сложение натурального числа и смешанной дроби выполнено верно.

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

Во втором выражении при сложении дробных частей, правильно приведённых к общему знаменателю, также получилась неправильная дробь, верно произведено сокращение этой неправильной дроби, но она не преобразована в смешанную дробь. В ответе получилось число, дробная часть которого является неправильной дробью. Это неверная запись ответа, хотя вычисления произведены правильно.

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

В третьем выражении неправильно выполнено сложение дробных частей. Дроби не приводятся к общему знаменателю, складывается числитель с числителем, знаменатель со знаменателем, что не является верным нахождением суммы двух дробей. В ответе получилась сократимая дробь, которая сокращена верно.

Ответ: ошибки допущены во 2 и 3 выражениях.

№ 2. Вычислите периметр прямоугольного участка земли, если его ширина м, а длина на м больше.

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

Периметр прямоугольника – это сумма длин всех его сторон. Так как у прямоугольника противоположные стороны попарно равны, достаточно знать длину и ширину прямоугольника. Ширина известна, она равна м, а о длине сказано, что она на м больше. Найдём длину прямоугольника, для этого к ширине прибавим м.

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

(м) – длина прямоугольника.

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

При сложении мы привели дробные части к общему знаменателю, сложили их, преобразовали получившуюся неправильную дробь в смешанную дробь и сложили её с суммой целых частей.

Теперь найдём периметр прямоугольника. Сложим длины четырёх его сторон:

(м) – периметр прямоугольника

Урок 72. Сложение смешанных дробейУрок 72. Сложение смешанных дробей

Заметим, что промежуточные вычисления – отдельное сложение целых и дробных частей – записывать не обязательно.