Урок 80. Представление дробей на координатном луче

Поделиться:
Конспект урока

Математика

5 класс

Урок №80

Представление дробей на координатном луче

Перечень рассматриваемых вопросов

– изображение дробей на координатном луче;

– запись координаты дроби;

– решение текстовых задач с опорой на смысл понятия координаты числа;

– применение дроби для выражения единиц измерения длины, массы, времени в более крупных единицах.

Тезаурус

Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.

Координатная ось – это прямая, с заданными на ней началом отсчёта, единичным отрезком и направлением отсчёта.

Координата данной точки – это число, которое соответствует данной точке на координатной оси.

Средним арифметическим нескольких чисел называют частное от деления суммы этих чисел на число слагаемых.

Обязательная литература

1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС//С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Мы уже знаем, что прямую с заданными на ней началом отсчёта, единичным отрезком и направлением отсчёта называют координатным лучом.

Начало отсчёта – точка 0.

Единичный отрезок – это расстояние от 0 до точки, выбранной для измерения.

Координатный луч обычно располагают горизонтально и направляют вправо.

На координатном луче можно изобразить дробь.

Изобразим дробь Урок 80. Представление дробей на координатном луче

Для этого единичный отрезок разделим на q частей.

Возьмём Урок 80. Представление дробей на координатном луче часть и отложим p раз на координатном луче от точки 0.

Урок 80. Представление дробей на координатном луче

Точку, изображающую на координатном луче дробь p/q, называют точкой с координатой p/q или короче – точкой p/q

Например, точка А имеет координату три пятых. Пишем A (3/5).

Точка В имеет координату семь пятых, выраженную неправильной дробью или одна целая две пятых, выраженную смешанным числом. Пишем В (7/8) или В(1 2/5)

Урок 80. Представление дробей на координатном луче

Положительные дроби называют ещё положительными рациональными числами, а точки, изображающие их на луче, называют положительными рациональными точками.

3/5, 7/5,1 2/5 – положительные дроби, или положительные рациональные числа.

Урок 80. Представление дробей на координатном луче

Если а и с – два положительных рациональных числа и с > a, то:

  1. точка c на координатном луче находится правее точки а;
  2. расстояние между точками а и c равно c – а;
  3. точка (a + c) : 2 является серединой отрезка, соединяющего точки а и с.

Урок 80. Представление дробей на координатном луче

Докажем, что точка (a + c) : 2 является серединой отрезка, соединяющего точки а и с:

Урок 80. Представление дробей на координатном луче

Рассмотрим задачу.

Найдём длину отрезка, соединяющего точки:

Урок 80. Представление дробей на координатном луче

и с = 1, и координату середины этого отрезка.

Урок 80. Представление дробей на координатном луче

Решение

3/7 < 1, поэтому точка 1 находится правее 3/7.

Значит, длина отрезка, соединяющего точки а и с, равна:

Урок 80. Представление дробей на координатном луче

Середина этого отрезка будет иметь координату:

Урок 80. Представление дробей на координатном луче

Таким способом можно вычислить координату середины отрезка, соединяющего любые две рациональные точки.

Т. е. между любыми двумя рациональными точками находится ещё хотя бы одна рациональная точка.

Число (a + c) : 2 называется средним арифметическим чисел а и с.

Например:

Урок 80. Представление дробей на координатном луче

Если необходимо вычислить среднее арифметическое нескольких чисел, нужно найти частное от деления суммы этих чисел на число слагаемых.

Например:

Урок 80. Представление дробей на координатном луче

Рассмотрим, как применять дроби для выражения единиц измерения длины, массы и времени в более крупных единицах.

Известно, что для измерения массы используют единицы измерения: граммы, килограммы, центнеры, тонны. Если масса тела небольшая, используют г или кг. Если тело более крупное, то массу измеряют в тоннах.

Мы знаем, что 1 кг = 1000 г. А как узнать, сколько килограмм в грамме? Для этого нужно один разделить на тысячу, получим одну тысячную, т. е. в одном грамме содержится одна тысячная килограмма.

Урок 80. Представление дробей на координатном луче

Рассмотрим единицы измерения времени. Время измеряют в секундах, минутах, часах. Вы знаете, что в одном часе шестьдесят минут, следовательно, минута будет равна одной шестидесятой часа.

Урок 80. Представление дробей на координатном луче

Урок 80. Представление дробей на координатном луче

Рассмотрим единицы измерения длины.

Длину измеряют в метрах, километрах, сантиметрах.

Урок 80. Представление дробей на координатном луче

Тренировочные задания

№ 1. Подставьте к изображению координаты середин отрезков АВ, ВС и СК.

Урок 80. Представление дробей на координатном луче

Варианты ответов:

Координаты середины отрезка определяются по формуле (a + c) : 2, где а и с – координаты концов отрезка.

Найдём середину отрезка АВ. Для этого сложим координаты точки А и В, поделим на два и получим:

Урок 80. Представление дробей на координатном луче

Значит, 1 – это середина отрезка АВ.

Найдём середину ВС. Для этого сложим координаты точки В и С, поделим на два и получим:

Урок 80. Представление дробей на координатном луче

Значит, 2 – это середина отрезка ВС.

Найдём середину СК. Для этого сложим координаты точки С и К, поделим на два и получим:

Урок 80. Представление дробей на координатном луче

Значит, 3 – это середина отрезка СК.

№ 2. Найдите среднее арифметическое чисел 11, 14 и 17. В ответе напишите только число: __

Средним арифметическим нескольких чисел называют частное от деления суммы этих чисел на число слагаемых.

У нас три слагаемых, значит, сложим числа 11, 14 и 17 и полученную сумму разделим на 3.

(11 + 14 + 17) : 3 = 42 : 3 = 14

Правильный ответ:14.