Конспект
Введём уравнение произвольной линии.
В прямоугольной системе координат рассмотрим произвольную линию L.
Уравнение с двумя переменными х и у называется уравнением линии L, если этому уравнению удовлетворяют координаты любой точки линии L и не удовлетворяют координаты никакой точки, не лежащей на этой линии.
Рассмотрим точки М и N в координатной плоскости.
y = f (x) – уравнение линии L, если выполняются условия:
М (х1; у1) ∈ L → y1 = f (x1)
N (х2; у2) ∉ L → y2 ≠ f (x2)
Теперь, зная метод координат и геометрические свойства окружности, выведем её уравнение.
Пусть в прямоугольной системе координат дана окружность, где C – центр окружности с координатами x0 и y0, а r – её радиус.
Расстояние от произвольной точки М с координатами х и у до точки С вычисляется по формуле:
Точка М лежит на окружности, то есть координаты точки М удовлетворяют этому уравнению. Значит, МС = r, MC2 = r2.
В прямоугольной системе координат уравнение окружности радиуса r и с центром (x — x0)2 + (y — y0)2 = r2 имеет вид:
Если центр окружности находится в начале координат, то уравнение окружности с центром в начале координат будет выглядеть так:
Теперь выведем уравнение прямой. Снова рассмотрим прямоугольную систему координат.
Докажем, что любая прямая в декартовых координатах имеет уравнение ax + by + c = 0, где а, b, с – некоторые числа, а х и у – переменные координаты точки А, принадлежащей прямой.
Как и при составлении уравнения окружности, обратимся к свойству прямой, равноудаленной от двух данных точек. Пусть h – произвольная прямая на плоскости и точка А с координатами х и у – точка этой прямой. Точки В и С равноудалены от прямой h, точка D – это точка пересечения ВС с прямой h. Поэтому h – срединный перпендикуляр к отрезку ВС. Так как АС = АВ, то AС2 = АB2, значит координаты точки А удовлетворяют уравнению (х – хв)² + (у – ув)² = (х – хс)² + (у – ус)², где В (хв; ув) и С (хс; ус)
Следовательно, это уравнение и является уравнением прямой h в прямоугольной системе координат.
После алгебраических преобразований получаем уравнение прямой: ах + bу + с = 0, где a, b, c некоторые числа. Так как В и С различные точки, значит разность их координат не равна нулю.
Таким образом, уравнение прямой в прямоугольной системе координат является уравнением первой степени.