Конспект урока
Алгебра
7 класс
Урок № 16
Произведение одночленов
Перечень рассматриваемых вопросов:
- Алгебраические выражения.
- Одночлен.
- Противоположные одночлены.
- Произведение одночленов.
- Свойства одночленов.
Тезаурус:
Произведение одночленов равно одночлену, множителями которого являются все множители данных одночленов.
Свойства одночлена:
1) Два одночлена считаются равными, если один из них получен из другого заменой произведения множителей, каждый из которых есть одна та же буква, соответствующей степенью этой буквы.
2) Если перед одночленом поставить знак плюс, то получится одночлен, равный исходному.
3) А если поставить перед одночленом знак минус, то получится одночлен, равный исходному, умноженному на число (-1).
Противоположные одночлены – это одночлены, которые отличаются лишь знаками.
Основная литература:
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
«Упрощать сложное – во всех отраслях знания самый существенный результат», – однажды сказал английский историк Генри Бокль.
Эта фраза, как нельзя лучше, описывает, то, чем мы будем заниматься сегодня, а именно, упрощать одночлены, используя как новые, так и ранее изученные их свойства.
Вспомним уже известные нам свойства одночленов.
1) Два одночлена считаются равными, если они отличаются друг от друга лишь порядком множителей.
Например:
(-12,3)асх = а(-12,3)хс
2) Два одночлена считаются равными, если один из них получен из другого заменой некоторых его числовых множителей их произведением.
Например,
-24kx = 6·х·(-4) · k
3) Одночлен считается равным нулю, если среди его множителей есть число ноль. Такой одночлен называется нулевым.
Например:
2х·0с = 0 – нулевой одночлен.
4) Два одночлена считаются равными, если один получен из другого путём опускания множителя 1.
Например:
7у·1а = 7уа
Добавим к ним ещё несколько свойств. Но в начале, введём новое понятие – произведение одночленов. Это не что иное, как одночлен, множителями которого являются все множители данных одночленов.
Например: 4ас · асх = 4асасх
Видно, что буква а повторяется 2 раза. Поэтому удобно воспользоваться следующими свойствами степеней, изученными нами ранее, для дальнейшего упрощения полученного одночлена.
1) аm·an= am+n
При умножении степеней с одинаковыми основаниями, показатели складываются, а основание остается неизменным.
2) (ab)n= an·bn.
При возведении в степень произведения надо возвестикаждый множитель в эту степень и результаты перемножить.
3) (am)n= amn. При возведении степени в степень показатели перемножаются, а основание остается прежним.
Где m, n– натуральные числа.
Теперь настало время рассмотреть ещё несколько свойств одночленов.
4) Два одночлена считаются равными, если один из них получен из другого заменой произведения множителей, каждый из которых есть одна та же буква, соответствующей степени этой буквы.
Например:
4ас · асх = 4асасх = 4а2с2х
-5 а с4х8с3 = -5 а с7х8
5) Если перед одночленом поставить знак плюс, то получится одночлен, равный исходному.
Например:
+ас = ас
6) Если поставить перед одночленом знак минус, то получится одночлен, равный исходному, умноженному на число (-1).
Например:
-ас = (-1)ас.
Теперь рассмотрим ещё два одночлена.
4а2х5 и -4а2х5
Можем ли мы их назвать равными?
Нет, т.к. они отличаются знаками. Такие одночлены называются противоположными. Противоположные одночлены – это одночлены, которые отличаются лишь знаками.
Итак, сегодня мы получили представление о новом понятии – противоположные одночлены и рассмотрели некоторые свойства одночленов.
Дополнительный материал.
Научимся упрощать сложные одночлены.
Давайте рассмотрим, что значит упростить одночлен.
Для этого мы должны воспользоваться свойствами степеней и свойствами одночленов, сформулированными ранее.
Возьмём произведение одночленов в степень, получим из него равный произведению:
-(-17)aaa·2,4(b4c5)3 · (-3)ccc·(2k)5
Для начала возведём все числа и буквы в степени, используя свойства степеней.
-(-17)aaa · 2,4(b4c5)3 · (-3)ccc · (2k)5 = -(-17)а3 · 2,4 b12c15 · (-3)c3 · 32k5 =
Далее найдём произведение чисел с учетом знаков «+» и «–», получается -3916,8. Теперь посмотрим на буквы и, используя свойства степеней, упростим выражение.
Получается, что произведение одночленов равно такому выражению:
-( -17)aaa · 2,4 (b4c5)3 · (-3)ccc · (2k)5 = -3916,8а3b12c18k5
Разбор заданий тренировочного модуля.
- Найдите одночлен, равный произведению одночленов
5ас · 2ах.
Варианты ответа:
10а2сх
а2сх
10асх
Решение.
Для решения, нужно воспользоваться свойствами степени и свойствами одночленов. Посмотрим внимательно на произведение одночленов, в каждом из них есть числа, которые мы перемножим между собой, и буква а в первой степени, которая повторяется 2 раза. Поэтому, в результате преобразований, получится одночлен 10а2сх.
Ответ: 10а2сх.
2) Представьте одночлен 125с6х9в виде куба другого одночлена.
Варианты ответа:
125(с2х3)3
(5с2х3)3
(5с3х7)3
Решение.
Для решения задания, нужно вспомнить, что куб – это третья степень числа или буквы в нашем одночлене.
Число 125 = 53,
Буквы с6 = (с2)3, х9 = (х3)3
Соединим все наши рассуждения вместе, и получим одночлен, соответствующий условию задания: 125с6х9 = (5с2х3)3.
Ответ: 125с6х9 = (5с2х3)3.