Конспект урока
Математика
6 класс
Урок № 38
Сложение дробей
Перечень рассматриваемых вопросов:
- правила сложения рациональных чисел с одинаковыми знаками, разными знаками;
- свойства сложения рациональных чисел, свойство нуля при сложении.
Тезаурус
Сумма дробей с одинаковыми положительными знаменателями есть дробь с тем же знаменателем и суммой их числителей.
Чтобы сложить две дроби с разными знаменателями, необходимо сначала привести их к общему положительному знаменателю, а потом сложить числители получившихся дробей.
Сумма противоположных дробей равна нулю.
Обязательная литература:
- Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
Дополнительная литература:
- Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.
Теоретический материал для самостоятельного изучения
Продолжаем изучать тему «Рациональные числа». Сегодня узнаем правила, с помощью которых мы будем складывать дроби любого знака.
Определение
Сумма дробей с одинаковыми положительными знаменателями есть дробь с тем же знаменателем и суммой их числителей.
Правила сложения рациональных чисел, записанных в виде дробей.
- Если у дробей общий знаменатель, записываем его в знаменатель результата.
- Числители складываем по правилам сложения целых чисел и записываем в числитель результата.
Если требуется, результат сокращаем и преобразовываем в смешанную дробь.
Выполните сложение рациональных чисел, записанных в виде дробей с одинаковыми знаменателями.
Решение
Так как знаменатели у дробей одинаковые, записываем знаменатель тот же. Числители складываем по правилу сложения целых чисел с разными знаками. Результат сокращаем на два.
Выполните сложение рациональных чисел, записанных в виде дробей с одинаковыми знаменателями.
Решение
Так как знаменатели у дробей одинаковые, записываем знаменатель тот же. Числители складываем по правилу сложения целых отрицательных чисел.
Сложение рациональных чисел, записанных в виде дробей с разными знаменателями.
Чтобы сложить две дроби с разными знаменателями необходимо сначала привести их к общему положительному знаменателю, а потом сложить их числители.
Алгоритм действия при сложении рациональных чисел, записанных в виде дробей с разными знаменателями:
найти общий положительный знаменатель;
найти сумму дробей по правилам сложения рациональных чисел, записанных в виде дробей с одинаковыми знаменателями.
Допустим, у нас есть две дроби с разными знаменателями. Необходимо, чтобы знаменатели стали одинаковыми. Используем основное свойство дроби.
Дробь не изменится, если её числитель и знаменатель умножить на одно и то же число.
Значит, если правильно подобрать множители, то знаменатели уравняются. Этот процесс называется приведением к общему знаменателю. А числа, «выравнивающие» знаменатели, называются дополнительными множителями.
Рассмотрим способы нахождения чисел, при умножении на которые знаменатели дробей станут равными.
Умножение «крест-накрест»
Самый простой способ: умножаем первую дробь на знаменатель второй дроби, вторую — на знаменатель первой дроби. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей.
Сложим дроби
При этом способе нахождения общего знаменателя могут получиться большие числа.
Этот способ используется в случае, если знаменатели дробей – взаимно простые числа.
Метод общих делителей
Этот приём помогает сократить вычисления.
Метод заключается в следующем:
если больший знаменатель делится на меньший, то число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем; дробь с большим знаменателем остаётся прежней.
Вычислим сумму
Метод наименьшего общего кратного
Определение
Наименьший общий положительный знаменатель – это наименьшее положительное число кратное знаменателям данных дробей.
Алгоритм приведения дробей к наименьшему общему положительному знаменателю:
- разложить на простые множители знаменатели дробей;
- найти наименьшее общее кратное (НОК) для знаменателей данных дробей;
- Привести дроби к общему положительному знаменателю, умножив числитель и знаменатель каждой дроби на соответствующие дробям дополнительные множители.
Найдём сумму дробей
Решение
Найдём НОК.
16 = 2 ∙ 8
24 = 3 ∙ 8
НОК:
2 ∙ 8 ∙ 3 = 48
Дополнительные множители:
к первой дроби
48 : 16 =3
ко второй дроби
48 : 24 =2
Сложение противоположных рациональных чисел
Правило сложения противоположных рациональных чисел:
результатом сложения противоположных рациональных чисел будет ноль.
Выполним сложение дробей.
Свойство нуля
Дополнительный материал
Решим задачу.
Решение
Найдём, сколько Кощей израсходовал сам за второй век.
Дроби с разными знаменателями. Общий знаменатель 10, тогда дополнительный множитель к первой дроби 2. Перемножим и получим:
Перемножим и получим:
Общий знаменатель 8. Дополнительный множитель к первой дроби 4.
Разбор заданий тренировочного модуля
№ 1. Разместите нужные подписи под изображениями.
Какие действия изображены?
Варианты ответов:
сложение дробей с нулём
сложение дробей с разными знаменателями
сложение дробей с одинаковыми знаменателями
Для выполнения задания обратимся к теоретическому материалу урока.
Правильный ответ
№ 2. Вставьте в текст нужные слова.
Сумма … дробей равна нулю.
Варианты слов для вставки:
противоположных
положительных
отрицательных
положительных и отрицательных
Для выполнения задания обратимся к теоретическому материалу урока.
Правильный ответ
Сумма противоположных дробей равна нулю.