Урок 11. Перпендикулярность плоскостей

Поделиться:
Конспект урока

Геометрия, 10 класс

Урок №11. Перпендикулярность плоскостей

Перечень вопросов, рассматриваемых в теме.

  • Свойства двугранного угла;
  • Доказательство признака перпендикулярности двух плоскостей;
  • Свойства прямоугольного параллелепипеда.

Глоссарий по теме

Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Перпендикуляры к ребру двугранного угла образуют линейный угол двугранного угла. Градусной мерой двугранного угла называется градусная мера его линейного угла.

Если угол между пересекающимися плоскостями равен 90 градусом, то плоскости перпендикулярны.

Признак перпендикулярности плоскостей: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Следствие из признака перпендикулярности плоскостей: Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.

Прямоугольный параллелепипед – фигура, у которой все боковые ребра перпендикулярны основанию.

Основная литература:

Атанасян Л.С., Бутузов В.Ф. Кадомцев С.Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.

Дополнительная литература:

Глазков Ю.А., Юдина И.И., Бутузов В.Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей в виде прямой а, не принадлежащими одной плоскости. Полуплоскости, образующие двугранный угол, называются его гранями. Прямая а, которая является общей границей полуплоскостей, называется ребром двугранного угла (рис. 1а и 1б).

Двугранный угол с ребром CD, на разных гранях которого отмечены точки A и B называют двугранным углом CABD.

Перпендикуляры к ребру AO и BO образуют линейный угол двугранного угла AOB (рис. 1в). Так как луч ОА перпендикулярен прямой CD и луч OB перпендикулярен прямой CD, то плоскость АОВ перпендикулярна к прямой CD. Таким образом, плоскость линейного угла перпендикулярна к ребру двугранного угла. Двугранный угол имеет бесконечное множество линейных углов

Градусной мерой двугранного угла называется градусная мера его линейного угла. Так же как и плоские углы, двугранные углы могут быть прямыми, острыми и тупыми.

Все линейные углы двугранного угла равны друг другу.

Рассмотрим два линейных угла АОВ и А1О1В1 (рис. 1г). Лучи ОА и О1А1, лежат в одной грани и перпендикулярны к прямой ОО1, поэтому они сонаправлены. Точно так же сонаправлены лучи OB и O1B1. Поэтому углы АОВ и А1О1В1 равны как углы с сонаправленными сторонами.

Урок 11. Перпендикулярность плоскостей

Урок 11. Перпендикулярность плоскостей

Урок 11. Перпендикулярность плоскостей

Урок 11. Перпендикулярность плоскостей

(Рис. 1)

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.

Если один из этих двугранных углов равен фи, то другие три угла равны соответственно 180 градусов минус фи, фи и 180 градусов минус фи (рис. 2 а). В частности, если один из углов прямой, то и остальные три угла прямые. Если угол между пересекающимися плоскостями равен 90 градусом, будем называть такие плоскости перпендикулярными (рис. 2б).

Урок 11. Перпендикулярность плоскостей

Урок 11. Перпендикулярность плоскостей

(Рис. 2)

Для доказательства теоремы рассмотрим плоскости альфа и бетта такие (рис. 3), что плоскость альфа проходит через прямую АВ, перпендикулярную к плоскости бетта и пересекающуюся с ней в точке А. Докажем, что плоскости альфа и бетта перпендикулярны. Плоскости альфа и бетта пересекаются по некоторой прямой АС. При этом прямая АВ перпендикулярна прямой АС, так как по условию прямая АВ перпендикулярна плоскости бетта, это означает, что прямая АВ перпендикулярна к любой прямой, лежащей в плоскости бетта.

Проведем в плоскости бетта прямую AD, перпендикулярную к прямой АС. Тогда угол BAD — линейный угол двугранного угла, образованного при пересечении плоскостей альфа и бетта. Но угол BAD равен 90 градусов так как прямая АВ перпендикулярна плоскости бетта. Следовательно, угол между плоскостями альфа и бетта равен 90 градусов. Что и требовалось доказать.

Урок 11. Перпендикулярность плоскостей

(Рис. 3)

Из этой теоремы вытекает важное следствие:

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.

На рисунке 4 представлен прямоугольный параллелепипед. У этой фигуры все боковые ребра перпендикулярны основанию.

Его основаниями служат прямоугольники ABCD и A1B1C1D1, а боковые ребра АА1,BB1,CC1 и DD1 перпендикулярны к основаниям. Отсюда следует, что ребро АА1 перпендикулярно к ребру АВ, т. е. боковая грань АА1В1В является прямоугольником. То же самое можно сказать и об остальных боковых гранях.

Таким образом, прямоугольный параллелепипед обладает следующими свойствами:

1) В прямоугольном параллелепипеде все шесть граней — прямоугольники.

2) Все двугранные углы прямоугольного параллелепипеда — прямые.

3) Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Измерениями прямоугольного параллелепипеда называются длины трех ребер, имеющих общую вершину.

Докажем последнее свойство.

Урок 11. Перпендикулярность плоскостей

(Рис. 4)

Так как ребро СС1 перпендикулярно к основанию ABCD, то угол АСС1, прямой. Из прямоугольного треугольника АСС1, по теореме Пифагора получаем

АС12 равно АС2 +СС12.

Но АС — диагональ прямоугольника ABCD, поэтому АС2 равно АВ2 + АD2. Кроме того, ребро СС1 равно ребру АА1. Следовательно, AC1 равно АВ2 + AD2 + АА12. Что и требовалось доказать.

Следствием из этого свойства является то, что диагонали прямоугольного параллелепипеда равны.

Стоит отметить, что если у прямоугольного параллелепипеда все три измерения равны, то он называется, а все его грани являются равными друг другу квадратами.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. В прямоугольном параллелепипеде ABCDA1B1C1D1 (рис. 5) боковая грань DD1C1C – квадрат, DC равно 4 см, BD1 равно 6 см. Найдите BC и докажите, что плоскости BCD1 и DC1 B1 взаимно перпендикулярны.

Сначала найдем BC. Воспользуемся тем свойством прямоугольного параллелепипеда, что квадрат его диагонали равен сумме квадратов трех его измерений.

Тогда диагональ BD1 в квадрате равна AD в квадрате плюс DD1 в квадрате плюс DC в квадрате. BD1 – известно из условия, DD1 и DC – стороны квадрата и тоже известны из условия, тогда отсюда мы можем выразить ребро AD, которое ребру BC.Отсюда находим, что BC равно 2 сантиметрам.

Для доказательства перпендикулярности плоскостей BCD1 и DC1 B1 воспользуемся признаком перпендикулярности плоскостей. Этот признак звучит следующим образом: если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Заметим, что плоскость BCD1 проходит через диагональ грани DD1 C1CCD1. Эта диагональ перпендикулярна плоскости DC1 B1 в соответствии с признаком перпендикулярности прямой и плоскости, так как CD1 перпендикулярна второй диагонали квадрата – C1D и перпендикулярна ребру прямоугольного параллелепипеда C1 B1. Что и требовалось доказать.

Урок 11. Перпендикулярность плоскостей

(Рис. 5)

Тестовый вопрос №2. В прямом двугранном угле дана точка A. Расстояния от точки A до граней угла: AA1=6 см и AB1=8 см. Определите расстояние от точки A до ребра двухгранного угла.

Решение.

Урок 11. Перпендикулярность плоскостей

Отрезки AA1 и AB1 перпендикулярны граням двугранного угла, поэтому AA1BB1 – прямоугольник. Искомое расстояние – диагональ этого прямоугольника, которую найдем с помощью теоремы Пифагора: сантиметров.

Ответ: 10 см.

Тестовый вопрос №10. В прямоугольном параллелепипеде ABCDA1B1C1D1 длины рёбер: AB = 2, BC=3, AA1 = 4. Найдите площадь сечения параллелепипеда плоскостью, проходящей через точки AB и C​1​​.

Решение. Нарисуем рисунок.

Урок 11. Перпендикулярность плоскостей

В рассматриваемом прямоугольном параллелепипеде проведем отрезок BC​1​​. Затем построим плоскость на прямых BC​1​​ и AB. Так как плоскости прямоугольного параллелепипеда AA1D1D и BB1C1C параллельны, поэтому искомым сечением является прямоугольник ABC1D1.

Нам известны отрезки AA1 и BC, из них по теореме Пифагора вычислим длину отрезка BC1: .

Теперь найдем площадь искомого прямоугольника: 10 .

Ответ: 10.