Урок 13. Многочлены от нескольких переменных

Поделиться:
Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №13. Многочлены от нескольких переменных.

Перечень вопросов, рассматриваемых в теме

1) определение многочлена от нескольких переменных;

2) понятие симметрических многочленов;

3) формулы сокращенного умножения для старших степеней;

4) бином Ньютона;

5) метод неопределенных коэффициентов.

Глоссарий по теме

Многочлен Р(х;у) называют однородным многочленом n-й степени, если сумма показателей степеней переменных в каждом члене многочлена равна n. Если Р(х;у) — однородный многочлен, то уравнение Р(х;у) = 0 называют однородным уравнением.

Многочлен Р(х;у) называют симметрическим, если он сохраняет свой вид при одновременной замене х на у и у на х.

Уравнение Р(x;y) = а, где Урок 13. Многочлены от нескольких переменных, называютсимметрическим, если Р(х;y) — симметрический многочлен.

Треугольник Паскаля —бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. 

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Многочлены от нескольких переменных можно складывать, вычитать, перемножать, возводить в натуральную степень, разлагать на множители — это вам известно из курса алгебры 7—9-го классов. Этот урок позволит нам несколько расширить знания о многочленах.

Пример 1. Разложить на множители многочлен: 2×2-5xy+2y2.

Воспользуемся методом группировки

2×2-5xy+2y2= 2×2-4xy-xy+2y2= 2x(x-2y) –y(x-2y)=

(x-2y)(2x+2y).

Пример 2. Выведем формулу сокращенного умножения для «квадрата суммы» (x+y+z+u)2.

(x+y+z+u)2=((x+y)+(z+u))2= (x+y)2+2(x+y)(z+u)+(z+u)2= x2+y2+z2+u2+2(xy+xz+xu+yz+yu+zu).

Итак, мы получили (x+y+z+u)2= x2+y2+z2+u2+2(xy+xz+xu+yz+yu+zu).

Среди многочленов от двух переменных выделяют однородные и симметрические многочлены.
 
Многочлен Р(х;у) называют однородным многочленом n-й степени, если сумма показателей степеней переменных в каждом члене многочлена равна n. Если Р(х;у) — однородный многочлен, то уравнение Р(х;у) = 0 называют однородным уравнением.

Приведем примеры.

1) р(х; у)=2х+3у – однородный многочлен первой степени; соответственно 2х+3у=0 – однородное уравнение первой степени.

2) р(х; у)=3х2+5ху-7у2  — однородный многочлен второй степени; соответственно 3х2+5ху-7у2 =0 — однородное уравнение второй степени.

3) p(x; y)= x3+4xy2-5y3 — однородный многочлен третьей степени; x3+4xy2-5y3 =0 соответственно  — однородное уравнение третьей степени.

4) p(x; y)= anxn+an-1xn-1y+an-2xn-2y2+…+a1xyn-1+a0yn — общий вид однородного многочлена n-й степени.

Рассмотрим еще один метод разложения многочленов на множители-

метод неопределенных коэффициентов. Суть метода неопределённых коэффициентов состоит в том, что вид сомножителей, на которые разлагается данный многочлен, угадывается, а коэффициенты этих сомножителей (также многочленов) определятся путём перемножения сомножителей и приравнивания коэффициентов при одинаковых степенях переменной. Теоретической основой метода являются следующие утверждения

  1. Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
  2. Любой многочлен третьей степени имеет хотя бы один действительный корень, а потому разлагается в произведение линейного и квадратичного сомножителя.
  3. Любой многочлен четвёртой степени разлагается в произведение многочленов второй степени.

Пример 3.  Разложить на множители многочлен

3 x 3 – x 2 – 3 x + 1.

Решение. Поскольку многочлен третьей степени разлагается в произведение линейного и квадратичного сомножителей, то будем искать многочлены x – p и ax 2 + bx + c такие, что справедливо равенство 3 x 3 – x 2 – 3 x + 1 = ( x – p )( ax 2+ bx + c ) = ax 3 + ( b – ap ) x 2 + ( c – bp ) x – pc . Приравнивая коэффициенты при одинаковых степенях в левой и правой частях этого равенства, получаем систему четырех уравнений для определения четырех неизвестных коэффициентов:

Урок 13. Многочлены от нескольких переменных

Решая эту систему, получаем: a = 3, p = –1, b = 2, c = –1. Итак, многочлен 3 x 3 – x 2 – 3 x + 1 разлагается на множители: 3 x 3 – x 2 – 3 x + 1 = ( x – 1)(3 x 2 + 2 x – 1).

Стоит отметить, что существует достаточно изящный способ решения однородных уравнений. Поясним его суть на примере.

Пример 4. Решим уравнение x3+4xy2-5y3 =0

Заметим, что если в заданном уравнении взять х=0, то получится у=0; это означает, что пара (0; 0) является решением однородного уравнения. Пусть теперь хУрок 13. Многочлены от нескольких переменных. Разделим почленно обе части заданного однородного уравнения на х3, получим:

Урок 13. Многочлены от нескольких переменных

Введем новую переменную Урок 13. Многочлены от нескольких переменных. Тогда уравнение примет вид 1+4z2-5z3=0.

Далее последовательно находим:

5z3-4z2-1=0

(5z3-5z2)+(z2-1)=0

5z2(z-1)+(z-1)(z+1)=0

(z-1)(5z2+z+1)=0

Из уравнения z-1=0 находим z=1, уравнение 5z3-4z2-1=0 действительных корней не имеет.

Если z=1, то Урок 13. Многочлены от нескольких переменных, т.е. у=х. Это значит, что любая пара вида (t; t) является решением заданного однородного уравнения. Между прочим, и отмеченная нами ранее пара (0; 0) также входит в указанный перечень решений.

Ответ: (t; t), где t- любое действительное число.

Теперь поговорим о симметрических многочленах. Многочлен Р(х;у) называют симметрическим, если он сохраняет свой вид при одновременной замене х на у и у на х. Например, симметрическим является двучлен x2y+xy2. В самом деле, при одновременной замене х на у и у на х получится двучлен y2x+yx2, но это то же самое, что x2y+xy2 . Другие примеры симметрических многочленов: xy, x+y, x2+y2, x3+y3, x4+y4 и т.д. Первые два из записанных многочленов считаются основными в том смысле, что любые другие симметрические многочлены можно представить в виде некоторой комбинации многочленов х + у и ху.

Теорема. Любой симметрический многочлен Р(х;у) можно представить в виде многочлена от ху и х+у.

Например,

x2+y2=(x+y)2-2xy

x3+y3=(x+y)3-3xy(x+y)

x4+y4= 2xy(x2+y2)-(x4+y4)+3(xy)2 и т.д.

Уравнение Р(x;y) = а, где Урок 13. Многочлены от нескольких переменных, называют симметрическим, если Р(х;y) — симметрический многочлен. Мы с вами рассматривали его на предыдущем уроке.

А теперь перейдем к такому понятию как бином Ньютона.

Слово бином означает «Два числа». В математике биномом называют «формулу для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных». Бином Ньютона — название формулы, выражающей степень двучлена в виде суммы одночленов.

Давайте вслед за Ньютоном попробуем ее вывести, чтобы затем применять.

Вы наверняка помните (или, по крайней мере, должны помнить), формулы сокращенного умножения для квадрата и куба суммы двух слагаемых (такая сумма называется «бином», по-русски – двучлен.

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

Если вы забыли эти формулы, можно их получить напрямую, раскрыв скобки в очевидных равенствах

(a+b)2=(a+b)(a+b)

(a+b)3=(a+b)(a+b)(a+b)

Может быть, вам приходил в голову вопрос: можно ли (без компьютера) получить формулы типа для биномов четвертой степени, пятой, десятой – какой угодно?

Давайте попробуем дойти напрямую хотя бы до пятой степени, а там, может быть, окажется «рояль в кустах» (для порядка будем размещать слагаемые в правой части по убыванию степени а, она убывает от максимума до нуля):

(a+b)4=(a+b)3(a+b)=(a3+3a2b+3ab2+b3)(a+b)=a4+4a3b+6a2b2+4ab3+b4

(a+b)5=(a+b)4(a+b)=(a4+4a3b+6a2b2+4ab3+b4)(a+b)=a5+5a4b+10a3b2+10a2b3+5ab4+b5

Теперь отдельно выпишем численные коэффициенты в правых частях формул при возведении бинома в заданную степень:

n=2 1,2,1

n=3 1,3,3,1

n=4 1,4,6,4,1

n=5 1,5,10,5,1

Легко проверить, что выписанные на численные коэффициенты – это строчки треугольника Паскаля, начиная с третьей. Этот «усеченный треугольник», в котором не хватает первых двух строк, легко сделать полным (получить строчки при n=0 и n=1):

n=0, (a+b)0=1

n=1, (a+b)1=a+b

Окончательно получим:

n=0 1

n=1 1,1

n=2 1,2,1

n=3 1,3,3,1

n=4 1,4,6,4,1

n=5 1,5,10,5,1

Общая формула бинома Ньютона:

Урок 13. Многочлены от нескольких переменных.

Правая часть формулы называется разложением степени бинома.

Урок 13. Многочлены от нескольких переменных — называется биномиальными коэффициентами, а все слагаемые — членами бинома.

Треугольник Паскаля — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. 

На самом деле, о треугольнике Паскаля было известно задолго до Паскаля — его знал живший в XI-XII вв. среднеазиатский математик и поэт Омар Хайям (к сожалению, его сочинение об этом до нас не дошло). Первое, дошедшее до нас описание формулы бинома Ньютона содержится в появившейся в 1265 г. книге среднеазиатского математика ат-Туси, где дана таблица чисел Урок 13. Многочлены от нескольких переменных  (биномиальных коэффициентов) до n=12 включительно.

Европейские ученые познакомились с формулой бинома Ньютона, по-видимому, через восточных математиков. Детальное изучение свойств биномиальных коэффициентов провел французский математик и философ Б. Паскаль в 1654 г.

В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.

Пример 5.

Доказать, что значение выражения 5n+28n-1, где n – натуральное число, делится на 16 без остатка.

Решение: представим первое слагаемое выражение как 5n= (4+1)n и воспользуемся формулой бинома Ньютона:

Урок 13. Многочлены от нескольких переменных

Полученное произведение доказывает делимость исходного выражения на 16. 

Бином Ньютона применяется при доказательстве Теоремы Ферма, в теории бесконечных рядов и выводе формулы Ньютона-Лейбница

Примеры и разборы решения заданий тренировочного модуля

№1.

Из данных многочленов выделите симметрические:

  1. 2х2-5ху+2у2-6
  2. 6x⁴-16xy²-6y3+19
  3. -3ху+6х²-5у²+8
  4. 16x4y²+16x²y4-x⁴-y⁴

Решение: к данному заданию применим определение симметрических многочленов (Многочлен Р(х;у) называют симметрическим, если он сохраняет свой вид при одновременной замене х на у и у на х). Получим, что нам подходят 1 и 4 пункты.

Верный ответ:

  1. 2х2-5ху+2у2-6
  2. 6x⁴-16xy²-6y3+19
  3. -3ху+6х²-5у²+8
  4. 16x4y²+16x²y4-x⁴-y⁴

№2.

(а+b)5= __a5 +___a4b+___a3b2+___a2b3+___ab4+__b5

Решение: для решения данного задания воспользуемся треугольником Паскаля

1    
1    1    
1    2    1    
1    3    3    1    
1    4    6    4    1    
1    5    10    10    5    1

Нас интересует последняя строчка.

Применив ее, получим ответ:

(а+b)5= 1a5 +5a4b+10a3b2+10a2b3+5ab4+1b5