Урок 13. Равнобедренный треугольник

Поделиться:
Конспект урока

Геометрия

7 класс

Урок № 13

Равнобедренный треугольник

Перечень рассматриваемых вопросов:

  • Понятие равнобедренного, равностороннего треугольника.
  • Формулировка и доказательство теоремы о свойствах равнобедренного треугольника.
  • Признак равнобедренного треугольника.
  • Измерения и вычисления в равнобедренном треугольнике.

Тезаурус:

Биссектриса угла треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны.

Медиана треугольника – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Высота треугольника – это перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

Равнобедренный треугольник – треугольник, у которого две стороны равны.

Равносторонний треугольник – треугольник, у которого все стороны равны.

Любой равносторонний треугольник является равнобедренным, обратное не верно.

Основная литература:

  1. Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.

Дополнительная литература:

  1. Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
  2. Зив Б. Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
  3. Мищенко Т. М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т. М., – М.: Просвещение, 2019. – 160 с.
  4. Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
  5. Иченская М. А. Геометрия: Самостоятельные и контрольные работы 7–9 классы. // Иченская М. А. – М.: Просвещение, 2019. – 144 с.

Теоретический материал для самостоятельного изучения.

Вы уже познакомились с такими понятиями как треугольник, рассмотрели его виды.

Рассмотрим такие виды треугольников: как равнобедренные и равносторонние, более подробно. Начнём с описания равнобедренного треугольника. Но для начала, дадим ему определение.

Треугольник называется равнобедренным, если две его стороны равны.

Урок 13. Равнобедренный треугольник

AB = BC.

∆ABC – равнобедренный.

В равнобедренном треугольнике равные стороны называются боковыми, а третья сторона – основанием.

AB и BC – боковые стороны ∆ABC.

AC – основание ∆ABC.

Если третья сторона равна двум другим, то любая сторона может быть основанием.

Теперь рассмотрим треугольник, у которого все стороны равны. Такой треугольник называется равносторонним.

Урок 13. Равнобедренный треугольник

AB = BC = AC.

∆ABC – равносторонний.

Докажем две теоремы о свойствах равнобедренного треугольника.

Теорема: В равнобедренном треугольнике углы при основании равны.

Урок 13. Равнобедренный треугольник

Дано:

ΔABC – равнобедренный.

BC – основание.

Доказать: ∠B = ∠C.

Доказательство:

  1. Проведем биссектрису АF.
  2. ∆ABF = ∆ACF (т.к. AF – общая сторона); ∠BAF = ∠CAF (AF –по определению биссектрисы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника).
  3. ∠B = ∠C.

Теорема доказана.

Теперь сформулируем теорему о биссектрисе, медиане и высоте равнобедренного треугольника, проведённых к основанию.

Теорема.

В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой треугольника.

Дано:

ΔABC – равнобедренный

BC– основание ΔABC

AF– биссектриса ΔABC

Доказать: AF – медиана и высота.

Урок 13. Равнобедренный треугольник

Доказательство:

  1. ∆ABF = ∆ACF (т.к. AF – общая сторона); ∠BAF = ∠CAF (AF – по определению биссектрисы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника) → BF = FC как соответствующие элементы равных треугольников.
  2. F – середина BC → AF – медиана (по определению медианы треугольника).
  3. ∠AFB =∠AFC (как соответствующие элементы равных треугольников), их сумма равна 180 градусам (по свойству развернутого угла).
  4. ∠AFB = ∠AFC = 90° →AF – высота треугольника (по определению высоты).

Теорема доказана.

Справедливы и следующие утверждения.

Высота равнобедренного треугольника, проведённая к основанию, является медианой и биссектрисой.

А медиана равнобедренного треугольника, проведённая к основанию, является высотой и биссектрисой.

Дано:

ΔABC – равнобедренный

BC– основание ΔABC

AF – медиана ∠ВАС ΔABC

Доказать: AF – биссектриса и высота ΔABC.

Урок 13. Равнобедренный треугольник

Доказательство:

∆ABF = ∆ACF т. к. ∠В = ∠С (по свойству равнобедренного треугольника); BF = CF (по определению медианы треугольника); AB = AC (∆ABC – по определению равнобедренного треугольника) → ∠BАF = ∠FАC (как соответствующие элементы равных треугольников) => AF ‑ биссектриса ΔABC (по определению биссектрисы треугольника).

∠AFB = ∠AFC как соответствующие элементы равных треугольников, но их сумма равна 180 (по свойству развернутого угла).

∠AFB = ∠AFC = 90° →AF – высота треугольника (по определению высоты треугольника).

Теорема доказана.

Сегодня мы узнали, что такое равнобедренный, равносторонний треугольник, рассмотрели свойства равнобедренного треугольника.

Разберем задачу на доказательство.

Рассмотрим, как можно решить задачу на доказательство, используя понятие: «медиана равнобедренного треугольника».

На рисунке изображён треугольник ABC, при этом AM – медиана, при этом AM = BM. Докажем, что угол А равен сумме двух других углов ∆ABC.

Урок 13. Равнобедренный треугольник

Дано:

∆ ABС:

АМ – медиана ∆ABC.

AМ = ВМ.

Доказать:

∠А = ∠В + ∠С.

Доказательство:

По условию AМ = ВМ → ∆АВМ – равнобедренный (по определению равнобедренного треугольника)→ ∠МВА = ∠ВАМ (по свойству равнобедренного треугольника).

Т. к. АМ – медиана ∆ABC и AМ = ВМ → AМ = ВМ = СМ → ∆АМС – равнобедренный (по определению равнобедренного треугольника) → ∠МСА = ∠ВАС (по свойству равнобедренного треугольника).

Получаем, что ∠А = ∠ВАС + ∠ВАМ = ∠МВА + ∠МСА = ∠В + ∠С.

Что и требовалось доказать.

Разбор решения заданий тренировочного модуля.

Задача 1.

Периметр равнобедренного треугольника ABC равен 50 см, боковая сторона AC на 4 см больше основания BC. Найдите основание треугольника.

Решение: Пусть х – основание ВС треугольника АВС, тогда АС = АВ (как боковые стороны равнобедренного треугольника).

АС = АВ = х + 4 (по условию).

Периметр треугольника АВС равен сумме всех его сторон, т. е. 50 см = АС + ВС + АВ,

50 = (х + 4) + (х + 4) + х,

50 = 3х + 8,

3х = 50 – 8,

3х = 42,

х = 14 см – основание BC.

Ответ: 14 см.

Задача 2.

На рисунке изображён равнобедренный треугольник ABC. AC – основание треугольника, ∠1 = 120. Найдите ∠2.

Урок 13. Равнобедренный треугольник

Решение: ∠1 и ∠АСВ – смежные →∠1 + ∠АСВ = 180, значит:

∠АСВ = 180 – 120 = 60

АВС – равнобедренный, значит: ∠ВАС = ∠АСВ = 60 (углы при основании равнобедренного треугольника равны).

∠2 = ∠ВАС = 60(как вертикальные углы).

Ответ: ∠ 2 = 60.