Урок 17. Стандартный вид одночлена. Подобные одночлены

Поделиться:
Конспект урока

Алгебра

7 класс

Урок № 17

Стандартный вид одночлена. Подобные одночлены

Перечень рассматриваемых вопросов:

  • Алгебраические выражения.
  • Одночлен; стандартный вид одночлена.
  • Подобные одночлены.
  • Коэффициент и степень одночленов.
  • Сумма (разность) подобных одночленов.

Тезаурус:

Стандартным видом одночлена называют такой его вид, в котором он представляет собой произведение числового множителя и натуральных степеней разных переменных (букв).

Подобные одночлены – это одночлены, которые состоят из одних и тех же букв, в одинаковых степенях, но с разными или одинаковыми коэффициентами (числовыми множителями).

Стандартный вид нулевого одночлена – это число 0.

Правило приведения одночлена к стандартному виду:

  • перемножить все числовые множители;
  • поставить полученный коэффициент на первое место;
  • получить буквенную часть.

Правило сложения (вычитания) подобных одночленов:

  • составить сумму (разность), записав все одночлены один за другим
  • привести все одночлены к стандартному виду
  • сложить (вычесть) их численные множители
  • после получившегося коэффициента дописать буквенные множители без изменений

Коэффициент одночлена, приведенного к стандартному виду – числовой множитель одночлена.

Степенью одночлена, записанного в стандартном виде, называют сумму показателей степеней всех букв, которые входят в его запись.

Основная литература:

  1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

  1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
  2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
  3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Известное изречение гласит: «Теория без практики – мертва, практика без теории – слепа».

И сегодня мы найдём ту «золотую середину», между теорией и практикой, при дальнейшем изучении одночленов.

Начнём с того, что введём новое понятие – стандартный вид одночлена.

Стандартный вид одночлена – это такой его вид, в котором он представляет собой произведение числового множителя и натуральных степеней разных букв. При этом каждая буква участвует в записи один раз, а все буквы записаны в алфавитном порядке.

Например:

12a2bc3

xy4

1,2cp8

Все представленные одночлены имеют стандартный вид, т. к. в начале одночлена стоит числовой множитель, а затем буквенные множители в алфавитном порядке.

Стоит отметить, что числовой множитель в одночленах, записанных в стандартном виде, имеет своё название – коэффициент одночлена. (Коэффициент одночлена, приведенного к стандартному виду – числовой множитель одночлена).

В наших примерах коэффициенты – это числа 12 и -1,2

А одночлены 14ac5ax и 3k4k2 записаны не в стандартном виде, так как числовые множители стоят не только в начале, а буквенные множители повторяются.

Стоит отметить, что стандартный вид нулевого одночлена есть число ноль.

Введём ещё одно понятие, характерное для одночленов – степень одночлена.

Степенью одночлена, записанного в стандартном виде, называется сумма показателей степеней всех букв, которые входят в его запись.

Например:

12a2bc3 – одночлен 6-й степени.

xy4 – одночлен 5-й степени

1,2cp8 – одночлен 9-й степени

Если ни одной буквы в одночлене нет, а сам одночлен отличен от ноля, то его степень будет нулевой.

Например:

15

2

Урок 17. Стандартный вид одночлена. Подобные одночлены

Это одночлены 0 степени.

У самого же числа 0 степень не определена, это единственный такой одночлен.

Рассмотрим правило приведения одночлена к стандартному виду.

Для этого нужно:

• перемножить все числовые множители;

• поставить полученный коэффициент на первое место;

• получить буквенную часть, используя свойства степеней, так, чтобы буквы не повторялись, и были записаны в алфавитном порядке.

Например:

Привести одночлен 4ac(-3)a2ck к стандартному виду.

Здесь есть два числа и буквы повторяются. Найдём произведение чисел, оно равно минус двенадцати, по свойству степеней найдём степень буквы а, как сумму степеней один и два, и степень буквы c – она равна двум.

Поставим полученное числовое значение в начало, буквенные множители запишем в алфавитном порядке.

4ac(-3)a2ck = (4 · (-3))a3c2k = -12a3c2k

Введём ещё одно понятие – подобные одночлены.

Подобные одночлены – одночлены, которые состоят из одних и тех же букв, в одинаковых степенях, но с разными или одинаковыми коэффициентами (числовыми множителями).

Например, 4a2c2x и -41a2c2x – подобные одночлены, так как отличаются лишь коэффициентами.

4a2c2x и -41a2c2 – не подобные одночлены, т.к. есть отличие в буквенных множителях.

Для подобных одночленов можно найти сумму и разность.

Рассмотрим правило сложения (вычитания) подобных одночленов.

Чтобы сложить (вычесть) одночлены, надо:

1. составить сумму (разность), записав все одночлены один за другим;

2. привести все одночлены к стандартному виду;

3. сложить (вычесть) их коэффициенты;

4. после получившегося коэффициента дописать буквенные множители без изменений.

Если сумма (разность) коэффициентов рана нулю, то сумма (разность) одночленов равна нулю.

Например, найдём сумму (разность) подобных одночленов, используя правило.

Т. к. одночлены приведены к стандартному виду, то остаётся только найти сумму или разность их коэффициентов, а затем приписать буквенные множители.

Сумма подобных одночленов:

4a2c2x + (-41a2c2x) = (4 + (-41))a2c2x = -37a2c2x

Разность подобных одночленов:

4a2c2x — (-41a2c2x) = (4 — (-41))a2c2x = 45a2c2x

Итак, сегодня мы получили представление о стандартном виде одночлена и научились находить сумму и разность подобных одночленов.

Действия над одночленами.

Усложним задачу. Приведём подобные одночлены:

-(-7)aaa · (bc2)3 · (2ak)5 + 2a8b3c6k5 – 2a7b37c6k5a

Для этого мы должны воспользоваться свойствами степеней и свойствами одночленов, рассмотренными ранее. Кроме того, нужно привести одночлены к стандартному виду, т.е. в каждом одночлене сначала записать числовой множитель, а затем буквенные в алфавитном порядке.

Возьмём первый одночлен и приведём его к стандартному виду. Произведение чисел будет равно 448. Буква а имеет 3 и 5 степень, найдём сумму этих степеней, она равна 8. Далее рассмотрим букву b, её степень находится как произведение степени 1 и 3, т.е. степень буквы b равна 3. Далее рассмотрим букву с, её степень находится как произведение степени 2 и 3, т. е. степень буквы с равна 6.

Далее рассмотрим букву k, её степень находится как произведение степени 1 и 5, т.е. степень буквы k равна 5. Итак, первый одночлен в стандартном виде выглядит так: 448a8b3c6k5

Второй одночлен записан в стандартном виде.

Третий одночлен приведём, аналогично первому, к стандартному виду. Итак, третий одночлен в стандартном виде выглядит так: 14a8b3c6k5.

А теперь найдём сумму и разность данных подобных одночленов.

-(-7)aaa · 2(bc2)3 · (2ak)5 + 2a8b3c6k5 – 2a7b37c6k5a = 448a8b3c6k5 + 2a8b3c6k5 – 14a8b3c6k5 = (448 + 2 – 14)a8b3c6k5 = 436a8b3c6k5

Таким образом, мы привели подобные одночлены.

Разбор заданий тренировочного модуля.

№1. Найдите одночлен, равный сумме одночленов 5ах + 2ах

Варианты ответа:

10ах;

7ах;

7аахх.

Решение:

Для выполнения задания нужно воспользоваться правилом сложения подобных одночленов. Для этого найдём сумму коэффициентов, а множители из букв перепишем. Получается 5ах + 2ах = (5 + 2)ах = 7ах. Это и есть правильный ответ.

Ответ: 7ах.

№ 2.

Урок 17. Стандартный вид одночлена. Подобные одночлены

Решение:

Для выполнения задания, нужно вспомнить свойства степеней (при возведении в степень показатели степеней перемножаются) и правило приведения одночлена к стандартному виду (коэффициент стоит в начале одночлена, а буквы записаны в алфавитном порядке). Поэтому возведём в степень число и буквы и выстроим буквы в алфавитном порядке.

Урок 17. Стандартный вид одночлена. Подобные одночлены