Конспект урока
Алгебра
7 класс
Урок № 2
Степень числа
Перечень вопросов, рассматриваемых в теме:
Понятие степени числа.
Свойства степеней.
Тезаурус
Степенью числа a с натуральным показателем n, бóльшим 1, называется произведение n одинаковых множителей, каждый из которых равен числу a.
Свойства степеней:
Произведение степеней с одним и тем же показателем равно степени с тем же показателем и основанием, равным произведению оснований.
Произведение степеней с одним и тем же основанием – это степень с тем же основанием и показателем, равным сумме показателей этих степеней.
Степень степени числа равна степени того же числа с показателем, равным произведению показателей этих степеней.
Основная литература:
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
1. Макарычев Ю. Н. Алгебра: 7 класс. // Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. – М.: Просвещение, 2019. – 256 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Для записи произведения числа самого на себя несколько раз применяют сокращённое обозначение.
Произведение шести множителей, каждый из которых равен 8, называют шестой степенью числа 8 и обозначают 86, т.е.
8 ∙ 8 ∙ 8 ∙ 8 ∙ 8 ∙ 8 = 86.
При этом число 8 называют основанием степени, а число 6 – показателем степени.
А теперь давайте сформулируем общее определение степени числа, опираясь на предыдущий пример:
степенью числа a с натуральным показателем n, бóльшим 1, называется произведение n одинаковых множителей, каждый из которых равен числу a.
Запись an читается как: а в степени n, или n-ая степень числа a.
А вот следующие записи можно произносить по-разному:
a2– её можно произносить «а в квадрате» или «а во второй степени»;
a3 – её можно произносить «а в кубе» или «а в третьей степени».
Стоит отметить, что особые случаи возникают, если показатель степени равен нулю или единице:
степенью числа а с показателем n = 1 является само это число:
a1 = a;
любое число в нулевой степени равно единице:
a0 = 1;
ноль в любой натуральной степени равен нулю:
0n = 0;
единица в любой степени равна 1:
1n = 1.
Выражение 00 (ноль в нулевой степени) считают неопределенным.
Примеры. Возведём в степени:
(−91)0 = 1
0144 = 0
1236 = 1.
При решении задач, нужно помнить, что возведением в степень называется нахождение числового или буквенного значения после его возведения в степень.
Рассмотрим несколько примеров.
Возведём в степень
25 = 2 ∙ 2 ∙ 2 ∙ 2 ∙ 2 = 32
2,53 = 2,5 ∙ 2,5 ∙ 2,5 = 15,625
Основание степени может быть любым числом – положительным, отрицательным или нулём.
При возведении в степень положительного числа получается положительное число.
При возведении нуля в натуральную степень получается ноль.
При возведении в степень отрицательного числа, в результате может получиться как положительное число, так и отрицательное число. Это зависит от того, чётным или нечётным числом был показатель степени.
Например, (-2)5. Ответ будет отрицательным, так как показатель степени, 5- нечётное число. (-2)5 = (-2) ∙ (-2) ∙ (-2) ∙ (-2) ∙ (-2) = -32.
(-5)4. А вот в этом примере ответ будет положительным, так как показатель степени, 4 – чётное число.
(-5)4 = (-5) ∙ (-5) ∙ (-5) ∙ (-5) = 625.
Рассмотрим такой пример: 42 ∙ 52 = 4 ∙ 4 ∙ 5 ∙ 5 = (4 ∙ 5) ∙ (4 ∙ 5) = (4 ∙ 5)2 = 202 = 400.
Данный пример подтверждает справедливость следующего свойства степеней:
Произведение степеней с одним и тем же показателем равно степени с тем же показателем и основанием, равным произведению оснований:
an∙ bn = (a ∙ b)n
Приведём еще такой пример: 52 ∙ 55 = (5 ∙ 5) ∙ (5 ∙ 5 ∙ 5 ∙ 5 ∙ 5) = 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 ∙ 5 = 57.
Этот пример подтверждает справедливость следующего свойства степеней:
Произведение степеней с одним и тем же основанием это степень с тем же основанием и показателем, равным сумме показателей этих степеней, т.е.
an ∙ am = an+m
Наконец, рассмотрим равенство:
(72)3 = (7 ∙ 7)3 = (7 ∙ 7) ∙ (7 ∙ 7) ∙ (7 ∙ 7) = 7 ∙ 7 ∙ 7 ∙ 7 ∙ 7 ∙ 7 = 76.
Это равенство подтверждает справедливость следующего свойства степеней:
Степень степени числа равна степени того же числа с показателем, равным произведению показателей этих степеней, т.е.
(an)m = an∙m
Разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Заполните таблицу:
Число | Основание | Показатель степени | |
1. | 255 | ||
2. | 1113 | ||
3. | 1356 |
Для заполнения пропусков вспомним, что такое основание и показатель степени.
Число | Основание | Показатель степени | |
1. | 255 | 25 | 5 |
2. | 1113 | 11 | 13 |
3. | 1356 | 135 | 6 |
№2. Тип задания: Чему равно произведение 54 ∙ 511 ∙ 42 ∙ 413?
Варианты ответов:
(4 ∙ 5)15
413 ∙ 514
(4 ∙ 5)30
415 ∙ 530
Для решения задания, воспользуемся свойствами степеней: an∙am= an+m и an∙bn= (a ∙ b)n
54 ∙ 511 ∙ 42 ∙ 413 = 515 ∙ 415 = (4 ∙ 5)15.
Верный ответ: (4 ∙ 5)15.