Конспект урока
Алгебра
7 класс
Урок № 21
Произведение одночлена и многочлена
Перечень рассматриваемых вопросов:
- Алгебраические выражения.
- Многочлен.
- Произведение одночлена и многочлена.
- Стандартный вид многочлена.
- Вынесение за скобки общего множителя.
- Противоположные многочлены.
Тезаурус.
Многочлен стандартного вида – это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.
Разность двух многочленов равна многочлену, членами которого являются: все члены уменьшаемого и, взятые с противоположными знаками, все члены вычитаемого. Сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
Вынесение за скобки общего множителя многочлена – преобразование многочлена в произведение одночлена и многочлена.
Разность двух многочленов есть сумма уменьшаемого и многочлена, противоположного вычитаемому.
Сумма противоположных многочленов равна нулю.
Основная литература:
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Перед нами два числовых выражения: 123 + 5 и 7.
Можем ли мы найти произведение данных выражений и его значение?
Конечно, да.
Значение данного выражения можно получить, используя распределительный закон умножения.
(123 + 5) · 7 = 123 · 7 + 5 · 7 = 861 + 35 = 896
Аналогичную арифметическую операцию можно выполнить и с любыми одночленами и многочленами, т.е. найти произведение одночлена и многочленов.
Посмотрим, как выполняется такое действие.
Для начала выясним, что такое произведение одночлена и многочлена.
Произведение одночлена и многочлена равно многочлену, членами которого являются произведения этого одночлена и каждого члена данного многочлена.
Например, найдите произведение одночлена х и многочлена а + с.
Решение:
(а + с) х = ах + сх
Если записать равенство в обратном порядке, т. е. преобразовать многочлен в произведение одночлена и многочлена, то получим результат выполнения действия, которое называют вынесением за скобки общего множителя.
ах + сх = (а + с) х
Можно за скобки выносить и более сложный одночлен.
Например, выполним следующее задание.
Дан многочлен 8а2– 4ас– 6а. Вынесите за скобки общий множитель.
Решение:
При выполнении задания нужно выделить одинаковые множители во всех членах исходного многочлена. В данном случае этот множитель равен 2а.
8а2 = 2а4а
-4ас = 2а(-2с)
-6а = 2а(-3)
Выносим его за скобки и получаем произведение одночлена и многочлена следующего вида.
8а2 – 4ас– 6а = 2а(4а– 2с– 3)
А теперь выполним следующее задание.
Найдём произведение многочлена и числа (-1). Раскроем скобки и в результате получим следующий многочлен.
(7ах+4) · (-1) = -7ах– 4
При этом исходный и полученный многочлены называются противоположными.
7ах + 4 и -7ах– 4 – противоположные многочлены.
Например:
4х3 – 5х и – 4х3 + 5х – противоположные многочлены.
Т. к. (4х3– 5х ) · (-1) = – 4х3 + 5х
Эти многочлены противоположные, т. к. один получен из другого путём умножения первого на число минус один.
Рассмотрим сумму противоположных многочленов.
Например:
(4х3– 5х) +(-4х3+ 5х) = 4х3– 5х – 4х3 + 5х = (4 – 4)х3 + (– 5 + 5)х = 0 · х3 + 0 · х = 0
Раскроем скобки и приведём подобные члены в полученном многочлене. Вынесем у подобных членов букву за скобки, в результате в скобках получается числовое выражение равное нулю. Поэтому произведение нуля и буквы даст ноль. Поэтому сумма противоположных многочленов равна нулю.
Проверим следующее утверждение. Разность двух многочленов есть сумма уменьшаемого и многочлена, противоположного вычитаемому.
Запишем выражение соответствующее утверждению.
(5а – х)– (с + 4) = (5а – х)+ (-с – 4)
Далее рассмотрим правую и левую часть данного выражения, раскроем скобки и получим равные результаты для правой и левой части выражения.
(5а – х) – (с + 4) = 5а – х – с – 4
(5а – х) + (-с – 4) = 5а – х – с – 4
Таким образом, мы проверили данное утверждение о том, что разность двух многочленов есть сумма уменьшаемого и многочлена, противоположного вычитаемому.
А теперь выясним, что будет происходить с многочленом, если его умножить на число 1.
Например:
(а + х) · 1 = а · 1 + х · 1 = а + х
Раскроем скобки и в результате получим исходный многочлен.
Если многочлен умножить на число 1, то в результате получится тот же самый многочлен.
Докажем это на практике.
Доказательства.
Пользуясь рисунком, докажите, что для а > 0; с > 0; k > 0; х > 0; у > 0.
а(с + k + х + у) = ас + аk + ах + ау
Доказательство: для доказательства данного равенства, воспользуемся формулой площади прямоугольника. S = ab, где а, b – стороны прямоугольника.
Для этого на рисунке выделим 4 прямоугольника (первый – со сторонами а и с, второй – со сторонами а и к, третий – со сторонами а и х, четвёртый – со сторонами у и а).
Чтобы найти площадь прямоугольника, состоящего из четырёх других, можно найти площадь каждого из 4-х прямоугольников, а затем сложить все найденные площади. Или сразу найти площадь прямоугольника, состоящего из четырёх других, как произведение двух его смежных сторон а и (с + k + х + у).
S1 = а(с + k + х + у).
S2 = ас + аk + ах + ау.
S1 = S2, следовательно: а(с + k + х + у) = ас + аk + ах + ау.
Что и требовалось доказать.
Разбор заданий тренировочного модуля.
1. Упростите (7ааааа+ 31х) · 81.
Решение:
Для решения задания, сначала приведём многочлен в скобках к стандартному виду, а затем найдём произведение одночлена и многочлена.
(7ааааа + 31х) · 81 = (7а5 + 31х) · 81 = 7а5 · 81 + 31х · 81 = 567а5 + 2511х
Ответ: 567а5 + 2511х.
2. Подберите вместо букв А и В одночлены так, чтобы равенство было верным:
5с · (а + b) = 35асk + 20bс2
Решение:
При выполнении задания, разложим правую часть равенства на множители так, чтобы один из множителей был одночлен 5с, далее вынесем за скобки общий множитель 5с и получим в скобках одночлены a и b.
35асk + 20bс2 = 5с · 7аk + 5с · 4bс = 5с · (7аk + 4bc)
Следовательно: a = 7аk; b = 4bс
Ответ: a = 7аk; b = 4bс.
Итак, сегодня мы получили представление о том, как находить произведение одночлена на многочлен, раскрывать скобки, выносить за скобки общий множитель.