Конспект урока
Алгебра
7 класс
Урок № 28
Выделение полного квадрата
Перечень рассматриваемых вопросов:
- Квадрат суммы.
- Квадрат разности.
- Преобразование многочленов.
- Выделение полного квадрата.
Тезаурус:
и уметь увидеть их в выражении.
Основная литература:
- Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
- Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
- Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
- Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Вы познакомились с формулами сокращённого умножения и научились раскладывать по ним квадрат разности и квадрат суммы. На этом уроке вы узнаете, как выделить из многочлена полный квадрат.
Этот многочлен можно преобразовать следующим образом.
6а мы представим в виде удвоенного произведения двух множителей: 3 и a:
Далее применим формулу квадрата суммы для двучлена а +3.
Таким образом, получили равенство:
Представим 10у как удвоенное произведение 5 и у:
Применим формулу квадрата разности для двучлена
Выделение полного квадрата используется, например, при доказательстве неравенств или определения знака выражения. Например:
Доказать, что для любых чисел а и в верно неравенство
В левой части неравенства две переменных, поэтому разделим одночлены на две группы. Число 45 можно добавить в любую группу, например, в группу, где переменная b.
Сложим два полученных выражения. В результате получим сумму двух квадратов двучленов:
то и сумма этих выражений будет положительной либо равна нулю. Что и требовалось доказать.
Материал для углублённого изучения темы.
При выделении полного квадрата числа могут получаться не только целыми, но и дробными.
Разбор заданий тренировочного модуля.
Объяснение: число 6 не является квадратом целого числа, поэтому удобнее вынести его за скобку:
2. Представьте выражение в виде суммы квадратов:
Объяснение: разделим выражение на две группы. Число 50 можем присоединить к любой группе, например к группе, где переменная m.
Получим сумму квадрата двучлена m + 5 и числа 25:
Во второй группе представим 10n как удвоенное произведение 5 и n, прибавим и вычтем 25:
Получим сумму квадрата двучлена n + 5 и числа -25: