Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №37. Формулы приведения.
Перечень вопросов, рассматриваемых в теме:
- формулы приведения;
- мнемоническое правило для формул приведения;
- преобразование тригонометрических выражений на основе использования формул приведения;
- вычисление значений тригонометрических выражений на основе формул приведения;
- доказательство тригонометрические тождества на основе формул приведения;
- решение уравнения с использованием формул приведения.
Глоссарий по теме
Формулы приведения – это формулы, которые позволяют синус, косинус, тангенс и котангенс различных углов приводить к острым углам.
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.
Теоретический материал для самостоятельного изучения
Для вычисления углов больше 90 используют формулы приведения. Они позволяют синус, косинус, тангенс и котангенс различных углов приводить к острым углам.
Пример: Вычислить и.
Представим число .
Рассмотрим точку А(1;0) на единичной окружности. При повороте вокруг начала координат на угол она сделает 2 полных оборота и ещё повернётся на угол . Переместится в точку В, в которую могла бы попасть, сделав поворот на угол . Значит, , .
А так как , то ,
Количество полных оборотов по 360 или по может выражаться любым целым числом k, как положительным, так и отрицательным и нулём. При повороте точки А(1;0) на угол , где k получается та же самая точка, что при повороте на угол
Рисунок 1 – точки А и В на единичной окружности
Справедливы равенства:
, где , , где
Пусть точка А(1;0) переместилась в точку В1 при повороте на угол и в точку В при повороте на угол (рис. 2).
Рисунок 2 – точки А, В, В1 на единичной окружности
Запишем в виде: . На единичной окружности точки В1 и В симметричны относительно оси Оу, значит их ординаты (синусы) равны, абсциссы (косинусы)- противоположные числа.
Поэтому , а .
А так как , то , .
Помним, что , тогда , .
Докажем, что для всех углов справедливы формулы:
, .
Воспользуемся формулой синуса и косинуса разности:, подставим известные значения в формулу, получаем:
.
(1)
(2)
Аналогично доказываются формулы:
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
Эти формулы называются формулами приведения для синуса и косинуса.
Пример: вычислите . Представим , тогда .
Выведем формулы для тангенса, используя его определение
,
Найдём
Получаем формулы для тангенса и котангенса:
, где и , где (13)
(14)
(15)
(16)
(17)
Пример: вычислите .
Преобразуем выражение в скобке
.
Обратите внимание, что все эти формулы связывают синусы с синусами или косинусами, а тангенсы с тангенсами или котангенсами. В одних случаях синус меняется на косинус и наоборот, в других – нет. Так, например, в формулах 1,2,3,8 и 13, где в левой части присутствуют синусы, косинусы и тангенсы не меняются.
В остальных формулах, где в левой части присутствуют или , синус меняется на косинус и наоборот, а тангенс на котангенс.
Формул приведений много и их не обязательно каждый раз выводить и запоминать.
Для этого придумали мнемоническое правило.
- Если в левой части присутствуют и т.д. синусы, косинусы и тангенсы не меняются.
Если в левой части присутствуют или , синус меняется на косинус, косинус на синус, тангенс на котангенс.
- Знак в правой части ставим тот же, который имело исходное число в левой части, при условии .
Существует легенда про рассеянного математика, который всё время забывал менять или не менять синус на косинус и наоборот. Он смотрел на свою сообразительную лошадь и она кивала головой вдоль той оси, где стояли числа и , . (рис. 3)
Рисунок 3 – «правило лошади»
Если аргумент содержал или , лошадь кивала вдоль оси Оу. Это означало «да, менять». А если , кивала вдоль оси Ох – «не менять».
Так же помните: чётные числа вида и т.д. находятся на оси Ох справа от нуля на единичной окружности, а нечётные и т. д. слева от нуля.
Если в выражении перед стоит плюс, то точка перемещается по окружности по часовой стрелке, если стоит минус, то против часовой стрелке.
Примеры и разбор решения заданий тренировочного модуля
Пример 1: упростите выражение .
находится на оси Ох, слева от нуля, косинус не меняем. Перед минус, точка перемещается против часовой стрелке и попадает во вторую четверть, здесь косинусы отрицательные (рис.4)
Рисунок 4 – перемещение точки по единичной окружности
Значит =.
Пример 2: вычислите
Преобразуем выражение в скобке: . находится слева на оси Ох, синус не меняем. Угол в третьей четверти, синусы отрицательные.