Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №40. Тригонометрическая форма комплексного числа.
Перечень вопросов, рассматриваемых в теме
1) понятие модуля комплексного числа;
2) понятие тригонометрической формы комплексного числа;
3) перевод комплексного числа в тригонометрическую форму.
Глоссарий по теме
Модулем комплексного числа z называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Аргументом комплексного числа z называется угол φ между положительной полуосью действительной оси Re z и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z=0.
Для этого рассмотрим формулы для нахождения в зависимости от а и b.
1.
2.
3.
4.
5.
6.
7.
8.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., Учебник комплект под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.
Дополнительная литература:
Шабунин М.И., Ткачева М.В., Федорова Н.Е.Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Комплексные числа имеют три формы, две из них мы уже изучили — алгебраическую и геометрическую.
Но в электротехнике, электрооборудовании, электронике, автоматике и других дисциплинах комплексное число записывается в тригонометрической форме.
Например: при работе трансформатора идет нагрев обмоток — активное сопротивление R, катушка выделяет электромагнитные волны — реактивное сопротивление. Сняли замеры трансформатора
2 + 7 i ,
где 2 Ом — активное сопротивление,
7 Ом — реактивное сопротивление
Тригонометрическая форма комплексного числа r(cos φ+sin φ).
На любом трансформаторе стоит маркировка cos φ=. Это энергетический показатель ГОС стандартов. Он показывает эффективность работы, КПД, cos φ- активный показатель мощности, тока, напряжения. sin φ- реактивный показатель.
Любое комплексное число (кроме нуля) z=a+bi можно записать в тригонометрической форме: z=|z|∙(cosφ+isinφ), где |z| – это модуль комплексного числа, а φ – аргумент комплексного числа.
Изобразим на комплексной плоскости число z=a+bi . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что a>0, b>0 :
Модулем комплексного числа z называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длина радиус-вектора, который на чертеже обозначен красным цветом.
Модуль комплексного числа z стандартно обозначают: |z| или r.
По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: . Данная формула справедлива для любых значений a и b.
Аргументом комплексного числа z называется угол φ между положительной полуосью действительной оси Re z и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z=0.
Аргумент комплексного числа z стандартно обозначают: φ или arg z.
Из геометрических соображений получается следующая формула для нахождения аргумента:
Внимание! Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой.
Для этого рассмотрим формулы для нахождения в зависимости от а и b.
1.
2.
3.
4.
5.
6.
7.
8.
Пример Представим в тригонометрической форме число z= -2+4i. Найдем его модуль и аргумент.
Поскольку a<0, b>0, то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение arctg 2, поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
— число z в тригонометрической форме.
Разбор решения заданий тренировочного модуля
№1. Тип задания: единичный выбор
Представить в тригонометрической форме число z= -1+2i.
Найдем его модуль и аргумент.
Поскольку a<0, b>0, то – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение arctg 2, поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:
— число z в тригонометрической форме.
Значит, верный ответ 1
№2. Тип задания: ввод с клавиатуры пропущенных элементов в тексте.
Найдите куб суммы z= (3+4i)3=_____________
Решение:
Возведем данное выражение в третью степень
Упрощаем полученное выражение, учитывая, что i2=-1
Ответ: