Конспект урока
Алгебра
7 класс
Урок № 44
Решение задач с помощью линейных уравнений
Перечень рассматриваемых вопросов:
• Линейные уравнения.
• Корень уравнения.
• Решение линейных уравнений.
• Текстовые задачи.
Тезаурус:
Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.
Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.
Решить уравнение – значит найти все его корни или установить, что их нет.
Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.
Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.
Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.
Свободный член – член уравнения, не содержащий неизвестного.
Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.
Решить уравнение – значит найти все его корни или установить, что их нет.
Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.
Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.
Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.
Основная литература:
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Мы уже рассматривали примеры функциональных зависимостей между величинами как математические модели реальных процессов. Теперь рассмотрим текстовые задачи, математическими моделями которых являются линейные уравнения и уравнения, сводящиеся к линейным.
Решить задачу можно с помощью системы уравнений, а можно с помощью одного уравнения. Рассмотрим на примере задачи.
Задача 1.
Из города А в город В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 15 км/ч, а вторую половину пути – со скоростью 90 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 54 км/ч. Ответ дайте в км/ч.
При решения текстовых задач эффективно построение схем и составление таблиц.
Используя сравнение скоростей, указанное в задаче, и обозначая скорость первого автомобиля икс, запишем скорость второго автомобиля на протяжении всего пути:
Скорость первого автомобиля: x, скорость второго автомобиля: x – 15x – 15/
Теперь заполним вспомогательную таблицу.
Условие, что автомобили прибыли в пункт назначения одновременно, используем для составления уравнения. Выражаем время первого автомобиля, которое он затратил на весь путь, через x.
Время первого автомобиля:
Время второго автомобиля:
Сократим на S ≠ 0 и умножим на 2.
Умножим обе части на 90x(x – 15), получим:
Решением уравнения будут корни:
x1 = 60, x2 = 45.
Условию уравнения удовлетворяет только x = 60
Ответ: 60 км/ч – скорость первого автомобиля.
Составим алгоритм решения текстовых задач при помощи уравнений.
Решать задачу с помощью уравнения следует в такой последовательности:
1) обозначить переменной одну из неизвестных величин;
2) другие неизвестные величины (если они есть) выразить через введенную переменную;
3) по условию задачи установить соотношение между неизвестными и известными значениями величин и составить уравнение;
4) решить полученное уравнение;
5) проанализировать решение уравнения и найти неизвестную величину, а при необходимости и значения остальных неизвестных величин;
6) записать ответ к задаче.
Дополнительный материал.
Решите задачу двумя способами.
В первый день со склада было отпущено 20% имевшихся груш. Во второй день 180% от того количества груш, которое было отпущено в первый день. В третий день ‑ оставшиеся 88 кг. Сколько кг груш было на складе первоначально?
Разберем 2 способа решения этой задачи.
Для первого способа составим вспомогательную таблицу:
Значит, первоначально было 200 кг груш.
2 способ.
Составим вспомогательную аблицу:
Ответ: 200 кг груш.
Разбор заданий тренировочного модуля.
Задание 1. Запишите выражение для нахождения цены 1 кг сахара (в руб.), если n тонн сахара стоят m рублей.
Решение:
Для решения задачи, вспомним, сколько килограммов содержится в одной тонне:
1 т = 1000 кг.
Следовательно, получаем:
n т = 1000n кг
Так как стоимость n тонн сахара = m рублей, то, чтобы найти, сколько стоит 1 кг сахара, нужно стоимость разделить на количество:
m : 1000n
Ответ:
Задание 2.
Цена персиков на 30 р. выше, чем цена абрикосов. Для консервирования компота купили 5 кг персиков и 7 кг абрикосов. По какой цене покупали фрукты, если вся покупка обошлась 850 рублей?
Решение:
Пусть цена абрикосов – x рублей. Тогда x + 20x + 20 – цена персиков.
Всего купили персиков: 5(x + 30) и абрикосов 7x.
Так как на всю покупку затратили 850 руб., имеем выражение:
5(x + 30) + 7x = 850
Раскроем скобки: 5x + 150 + 7x = 850
Перенесем слагаемые, не содержащие переменной, в правую часть, меняя знак на противоположный:
5x + 7x = 850 – 150
Приведём подобные слагаемые:
12x = 700
Поделим обе части уравнения на 12:
Получаем: цена абрикосов равна:
Следовательно, цена персиков равна:
Проверим полученное решение:
850 = 850
Ответ:
цена абрикосов равна:
цена персиков равна:
Следовательно, полученное решение верно.