Конспект урока
Алгебра
7 класс
Урок № 45
Уравнения первой степени с двумя неизвестными
Перечень рассматриваемых вопросов:
• Линейные уравнения.
• Корень уравнения.
• Решение линейных уравнений.
• Линейное уравнение с двумя неизвестными.
Тезаурус:
Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.
Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.
Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.
Свободный член – член уравнения, не содержащий неизвестного.
Решить уравнение – значит найти все его корни или установить, что их нет.
Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.
Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.
Основная литература:
Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Мы с вами уже познакомились с линейными уравнениями первой степени, содержащими одно неизвестное.
Однако уравнение может содержать не одно, а несколько неизвестных, обозначенных буквами. Сформулируем определение уравнения в общем виде.
Определение.
Уравнением называется равенство, в котором одно или несколько чисел, обозначенных буквами, являются неизвестными.
Пусть, например, сказано, что сумма квадратов двух неизвестных чисел.
x2 + z2 = 7×2 + z2 = 7
Для уравнений с двумя неизвестными остаются справедливыми все те свойства, которые были установлены для уравнений с одним неизвестным.
Попробуем дать определение таких уравнений.
Определение.
Уравнением первой степени с двумя неизвестными называется уравнение вида ax + bx = c, где x, y – неизвестные, a, b (коэффициенты при неизвестных), не равные оба нулю, c – любое число.
Решим уравнение: 2x – y = 3
Возьмём пару чисел: x = 1, y = –1.
Подставив эти значения, получим верное равенство:
2 – (–1) = 3
3 = 3
Следовательно, эта пара чисел удовлетворяет уравнению, или она (эта пара) – решение уравнения.
Возьмём пару чисел: x = 2, y = 4
2 · 2 – 4 = 0
Следовательно, 0 ≠ 3. Это ложное равенство.
Говорят, что пара чисел не удовлетворяет уравнению, или, что она – не решение уравнения.
Определение. Каждая пара значений x и y, подстановка которых в уравнение с двумя неизвестными x и y, обращает его в верное равенство.
Свойство.
Уравнение первой степени, содержащее два неизвестных, имеет бесконечное множество решений.
В случае линейной зависимости, выражающейся уравнением первой степени с двумя неизвестными, графиком является прямая линия.
Докажем, что прямая линия будет графиком и любого уравнения первой степени с двумя неизвестными.
Возьмём уравнение: 2x – y = 4
Выразим y через x:
y = 2x – 4
Уравнение представляет собой линейную зависимость вида:
y = ax + b, графиком является прямая линия.
Решим задачу.
Трехногие инопланетяне выгуливают на лужайке своих двуногих питомцев. Кто-то подсчитал, сколько ног ходит по лужайке. Их оказалось 15. Сколько было инопланетян и сколько их питомцев?
Необходимо ввести две переменные: x – число инопланетян, y – число питомцев, тогда получим уравнение 3x + 2y = 15.
Давайте же узнаем, сколько инопланетян выгуливало своих питомцев.
3x + 2y = 15. Выразим y через x:
далее воспользуемся методом перебора: при x = 1, y = 6. При x = 2,
при x = 3,y = 3
Ответ: 1 инопланетянин и 6 питомцев; 3 инопланетянина и 3 питомца.
Подобные уравнения встречаются часто, они-то и называются неопределенными. Особенность их состоит в том, что уравнение содержит две или более переменных и требуется найти все целые или натуральные их решения. Такими уравнениями и занимался Диофант. Он изобрел большое число способов решения подобных уравнений, поэтому их часто называют диофантовыми уравнениями.
Разбор заданий тренировочного модуля.
Задание 1.
Какое значение переменной удовлетворяет уравнению: 4x – 2y – 14?
Решение.
Для решения уравнения, выразим одну переменную через другую: 2y = 4x – 14,
разделим обе части уравнения на 2:
y = 2x – 7,
подставим вместо переменной x её значения:
при x = 3 получаем:
y = 6 – 7 = –1,
при x = 4 получаем:
y = 8 – 7 = 1,
при x = –4 получаем:
y = –8 – 7 = –15.
Следовательно, из предложенного списка, уравнению удовлетворяет только пара:
x = 4, = 1.
Ответ: x = 4, = 1.
Задание 2.
Решите уравнение: x – 2y = 5
Решение:
Выразим переменную x через переменную y:
x = 5 + 2y
подставим вместо переменной y её значения:
при y = 1 получаем x = 5 + 2 = 7
при y = 3 получаем x = 5 + 6 = 11
при y = 5 получаем x = 5 + 10 = 15
Следовательно, из предложенного списка, уравнению удовлетворяет только пара:
x = 7, y = 1
Ответ: x = 7, y = 1.