Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок № 49. Системы тригонометрических уравнений.
Перечень вопросов, рассматриваемых в теме:
- что такое система тригонометрических уравнений;
- как решать системы тригонометрических уравнений;
- какие приемы можно использовать при решении систем тригонометрических уравнений.
Глоссарий по теме
Система уравнений – это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Записывается с помощью знака {
– система из трех уравнений с тремя неизвестными.
Решением системы уравнений называется упорядоченный набор чисел (значений переменных), при подстановке которых вместо переменных каждое из уравнений обращается в верное равенство.
Основная литература:
Колягин Ю.М., под ред. Жижченко А.Б. Алгебра и начала математического анализа. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. Уровни – М.: Просвещение, 2010. — 368 с.
Дополнительная литература:
Амелькин,, В.В., Рабцевич В.Л., Задачи с параметрами: Справ. пособие по математике – М.: «Асар», 1996. – 752 с.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
Основными методами решения систем уравнений являются:
— метод подстановки
— метод замены переменной.
Также при решении систем тригонометрических уравнений используются многие тригонометрические формулы.
Рассмотрим решение систем тригонометрических уравнений.
Пример 1.
Решение:
При решении этой системы можно действовать по-разному:
1) можно использовать формулы преобразования произведения в сумму синусов (в первом уравнении) или косинусов (во втором уравнении)
2) можно использовать формулами косинуса суммы и разности во втором уравнении.
Воспользуемся формулой преобразования произведения косинусов в сумму косинусов:
.
Теперь, учитывая, что косинус двойного аргумента может быть выражен через квадрат синуса и косинуса аргумента, возведем в квадрат первое уравнение. Но, так как возведение в квадрат не является равносильным преобразованием, введем ограничение:
, то есть и должны быть одного знака.
.
Теперь введем новые переменные:
, (*) и решим вспомогательную систему:
.
Решим ее методом подстановки.
.
Решим уравнение (**).
.
. Вернемся к исходным переменным.
,
.
С учетом условия получим две системы:
Или
или
Ответ:
Или
.
Рассмотрим еще один пример.
Пример 2.
Решение:
С учетом области определения уравнений преобразуем каждое уравнение:
.
Теперь сложим эти уравнение, оставив в системе, например, первое уравнение:
,
,
.
Теперь выразим из второго уравнения y:
,
,
,
,
,
,
.
Ответ: .
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Решите систему уравнений:
Решение:
Введем новые переменные: .
Тогда вспомогательная система будет иметь вид:
.
,
или
.
Получаем четыре пары решений для вспомогательной системы:
; ; ; .
Так как , то решение имеет только первая система: .
.
Пример 2.
Решите систему уравнений: .
Решение:
Пусть .
Система примет вид: , то есть мы получили простую линейную систему.
Ее можно решить методом подстановки или методом алгебраического сложения:
,
,
,
,
.
Ответ:.