Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №5. Свойства и график функции y=tgx и y=ctg x
Перечень вопросов, рассматриваемых в теме
- Изучение и объяснение свойств функций y=tgx и y=ctgx с помощью графика;
- Определение свойств и положения графика тригонометрических функций вида y=|tg(k|x|+b)| y=|ctg(k|x|+b|;
- Объяснение зависимости свойств и положения графика функции вида y=|tg(k|x|+b)| и y=|ctg(k|x|+b| от значения коэффициентов k,b.
Глоссарий по теме
Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к нулю при неограниченном удалении от начала координат этой точки по кривой.
Тангенсоида –график функции у = tgx; плоская кривая, изображающая изменение тангенса в зависимости от изменения его аргумента (угла).
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2010.–336 с.
Дополнительная литература:
Шахмейстер, А.Х. Тригонометрия / А.Х. Шахмейстер.— СПб.: Петроглиф, 2014. — 750 с.
Открытые электронные ресурсы:
Открытый банк заданий ЕГЭ ФИПИ [Электронный ресурс].–Режим доступа: http://ege.fipi.ru/
Решу ЕГЭ образовательный портал для подготовки к экзаменам [Электронный ресурс].– Режим доступа: https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
Актуализация знаний
Вычислите:
1. ;
2.
Ответ:
Объяснение нового материала
Изучение свойств функции y=tgx начнем с построения графика. Обратимся к единичной окружности:
рис.1 Тригонометрический круг
Переносим основные значения углов на координатную плоскость. По оси абсцисс откладываем угол в радианах, по оси ординат – значения тангенса угла.
рис.2 График y=tgx на промежутке
Как любая тригонометрическая функции, функция тангенса периодическая, делая параллельный перенос получаем:
рис.3 График y=tgx
Заметим, что график симметричен относительно начала координат, следовательно функция тангенса нечётная. Используя построенный нами график, выведем основные свойства y=tgx:
1. Область определения функции y = tgx все действительные числа, кроме чисел вида
2. Функция периодическая с периодом , т.к.
3. Функция нечётная, т.к. . График нечётной функции симметричен относительно начала координат;
4. Функция возрастает на всём интервале;
5. Функция не ограничена ни снизу, ни сверху. Функция не имеет ни наибольшего, ни наименьшего значений;
6.
7. Функция принимает:
- значение, равное 0, при ;
- положительные значения на интервале
- отрицательные значения на интервале
Для построения графика можно придерживаться алгоритму рассмотренному при построении графика , однако (формула приведения). Т.е. смещая тангенсоиду на единиц влево и делаем симметрию относительно оси Ох за счёт коэффициента –1, получаем:
рис.3 График y=сtgx
Основные свойства y=сtgx:
1. Область определения функции y = сtgx все действительные числа, кроме чисел вида
2. Функция периодическая с периодом ;
3. Функция нечётная. График нечётной функции симметричен относительно начала координат;
4. Функция убывает на всём интервале;
5. Функция не ограничена ни снизу, ни сверху. Функция не имеет ни наибольшего, ни наименьшего значений;
6. .
Примеры и разборы решения заданий тренировочного модуля:
Пример 1.
Найдем все корни уравнения , принадлежащие отрезку .
Построим графики функций и (рис. 6)
Рис. 4 – графики функций и .
Графики пересекаются в трёх точках, абсциссы которых являются корнями уравнения .
Ответ:
Пример 2. Найти все решения неравенства , принадлежащие отрезку .
рис.5 графики функций и
Графики пересекаются в трёх точках, абсциссы которых являются корнями уравнения .
Ответ: