Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Поделиться:
Конспект урока

Алгебра

7 класс

Урок № 6

Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Перечень рассматриваемых вопросов:

Понятие бесконечной периодической десятичной дроби.

Примеры бесконечной периодической десятичной дроби.

Представление рационального числа в видебесконечной периодической десятичной дроби.

Тезаурус:

Любое целое число и любую конечную десятичную дробь можно считать бесконечной периодической десятичной дробью или коротко: периодической дробью.

Любое положительное рациональное число

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

преобразуется в положительную дробь.

Любая периодическая дробь – это десятичное разложение некоторого положительного рационального числа

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют «чистой».

Если в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют «смешанной».

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

На прошлом уроке мы рассмотрели условия, при которых обыкновенную дробь можно представить в виде конечной десятичной.

А как поступать, когда невозможно представить её в таком виде?

Введём понятие бесконечной периодической десятичной дроби.

Если знаменатель q несократимой дроби p/q не имеет делителей, кроме 2 и 5, то эта дробь преобразуется в конечную десятичную дробь.

Если знаменатель содержит, кроме 2 и 5, другие простые делители, то мы не сможем представить её конечной десятичной дробью.

Например:

5/9

Знаменатель 9 = 33

5/9 не преобразуется в конечную десятичную дробь. Убедимся в этом, выполнив деление уголком.

Разделим числитель 5 на знаменатель 9.

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Процесс деления в столбик бесконечный. Приходим к выражению 0,555…,

точки означают, что цифра 5 периодически повторяется бесконечно много раз.

Выражение 0,555… называют бесконечной периодической десятичной дробью или коротко: периодической дробью.

Записывают 0,(5) .

Читают: « ноль целых и пять в периоде».

Цифру (5) называют периодом дроби 0,(5).

Говорят, что число пять девятых представлено в виде периодической дроби ноль целых и пять в периоде.

При этом пишут:

5/9 = 0,555… = 0,(5)

Выражение 5/9 и 0,(5) являются обозначениями одного и того же числа в виде обыкновенной дроби 5/9 и в виде периодической дроби 0,(5).

Рассмотрим ещё пример.

Рассмотрим:

4/15

Дробь четыре пятнадцатых несократимая, и её знаменатель имеет простые делители 3 и 5, поэтому деление не может быть конечным. Проверим.

Делим уголком 4 на 15.

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Записывают так:

0,2(6)

читают: «ноль целых две десятых и шесть в периоде».

(6) ‑ период дроби.

В примерах мы увидели разные периодические дроби.

Периодические дроби бывают двух видов: «чистые» и «смешанные».

Если в периодической дроби период начинается сразу после запятой, то такую периодическую дробь называют «чистой».

Например:

0,(3)

0,(6)

0,(5)

Видно, что в этих дробях период начинается сразу после запятой.

Если же в периодической дроби период начинается не сразу, а после некоторого количества не повторяющихся цифр, то такую периодическую дробь называют «смешанной».

Например:

0,2(6),

0,46(76)

Сформулируем утверждение:

Если применить правило деления уголком к любой несократимой дроби p/q

Где q – знаменатель, который, кроме 2 и 5 имеет другие простые делители, то получится бесконечная периодическая десятичная дробь, или коротко: периодическая дробь.

Приписывая к конечной десятичной дроби бесконечно много нулей, мы её приводим в бесконечную периодическую десятичную дробь с периодом 0.

Например:

45 = 45,0 = 45,000… = 45,(0)

0,673 = 0,673000 = 0,673(0).

Значит, любое целое число и любую конечную десятичную дробь можно считать бесконечной периодической десятичной дробью или коротко: периодической дробью.

Тогда сформулируем:

Любое положительное рациональное число p/q преобразуется в периодическую дробь.

Верно обратное. Любая периодическая дробь – это десятичное разложение некоторого положительного рационального числа p/q.

Периодичность десятичного разложения обыкновенной дроби

Рассмотрим произвольную положительную несократимую дробь p/q

Покажем, что если разделить числитель дроби на знаменатель уголком, то в частном получится либо конечное, либо бесконечное периодическое её преобразование.

Нам известно, чтобы получить конечное десятичное разложение, знаменатель qне должен иметь простых делителей, кроме 2 и 5

В других случаях может быть только бесконечное десятичное разложение, которое является периодическим. Пусть нужно найти десятичное разложение несократимой дроби 15/13.

Будем делить уголком 15 на 13.

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Здесь одной звёздочкой отмечен этап вычислений, когда снесена последняя цифра делимого. Получаемые после этого остатки заключены в прямоугольники. Видно, что остатки, отмеченные двумя, тремя звёздочками, равны между собой. Это показывает, что процесс деления носит периодический характер и приводит к бесконечной периодической десятичной дроби, то есть:

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Теперь на примере рассмотрим, как можно, зная бесконечную периодическую десятичную дробь, записать её обыкновенной дробью.

Запишем периодическую дробь 0,(7) в виде обыкновенной.

Для этого обозначим искомую величину х. Тогда справедливо равенство

х = 0,(7) (1)

Умножим это равенство на 10, получим

10х = 7,(7) (2).

Вычтем из равенства (2) равенство (1).

10x – x = 7

9x = 7

x = 7 : 9

Применив к дроби 7/9 деление уголком. Снова получим периодическую дробь 0, (7.)

Разбор заданий тренировочного модуля.

Подберите обыкновенную дробь, равную периодической десятичной 0,(14).

Варианты ответов: 14/99, 14/98 14/90

Решение.

Обозначим искомую величину х. Тогда справедливо равенство:

х = 0,(14) (1)

Умножим это равенство на 100, получим

100 х = 14,(14) (2).

Вычтем из равенства (2) равенство (1).

100x – x = 14

99x = 14

x = 14/99

Найдите десятичное разложение обыкновенной дроби 769/4950

Варианты ответа:

0,15(35);

0,155(35);

0,1(535);

0,153(5).

Решение: Для решения задачи нужно выполнить деление уголком:

Урок 6. Периодические десятичные дроби. Периодичность десятичного разложения обыкновенной дроби

Ответ: 0,155(35).