Урок 9. Признак перпендикулярности прямой и плоскости

Поделиться:
Конспект урока

Геометрия, 10 класс

Урок №9. Признак перпендикулярности прямой и плоскости

Перечень вопросов, рассматриваемых в теме.

  • Доказательство признака перпендикулярности прямой и плоскости

Глоссарий по теме

Две прямые в пространстве называются перпендикулярными, если угол между ними равен 90º.

Прямая называется перпендикулярной к плоскости, если она перпендикулярная к любой прямой, лежащей в этой плоскости.

Лемма о перпендикулярности двух прямых к третьей прямой: если одна из двух параллельных прямых перпендикулярная к третьей прямой, то и другая прямая перпендикулярна к этой прямой.

Теорема о параллельных прямых, перпендикулярных плоскости: если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.

Признак перпендикулярности прямой и плоскости: если прямая перпендикулярная к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

Обязательная литература:

Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.

Дополнительная литература:

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Для того чтобы проверить перпендикулярность прямой к плоскости достаточно проверить перпендикулярность лишь к двум пересекающимся прямым, лежащим в этой плоскости.

Для доказательства рассмотрим прямую a, перпендикулярная к прямым p и q, лежащим в плоскости α и пересекающимся в точке О (рис. 1).

Урок 9. Признак перпендикулярности прямой и плоскости

(Рис. 1)

Сначала рассмотрим случай, когда прямая a проходит через точку О (рис. 2). Проведем через точку О прямую l, параллельную прямой m. Если m проходит через точку О, то в качестве l возьмем саму m.

Отметим на прямой a точки A и B так, чтобы точка O была серединой отрезка AB. Затем проведем в плоскости α прямую, пересекающую прямые p, q и l соответственно в точках P, Q и L.

Урок 9. Признак перпендикулярности прямой и плоскости

(Рис. 2)

Так как отрезок AO равен OB и прямая a перпендикулярна к прямым p и q, то p и q являются серединными перпендикулярами к отрезку AB. Поэтому отрезок AP равен BP и AQ равен BQ. Следовательно, треугольник APQ равен треугольнику BPQ по трем сторонам. Отсюда получаем, что угол APQ равен углу BPQ.

Треугольники APL и BPL равны по двум сторонам и углу между ними, так как отрезок AP равен BP, PL – общая сторона и угол APL равен углу BPL. Значит, отрезок AL равен BL. Значит, треугольник ABL – равнобедренный, а его медиана LO является и высотой, т.е. l перпендикулярна прямой a.

По лемме о перпендикулярности двух прямых к третьей прямой m будет перпендикулярна прямой a. Поэтому a перпендикулярна к любой прямой m плоскости α.

Теперь рассмотрим случай, когда прямая а не проходит через точку O (рис. 3). Проведем через точку O прямую a1, параллельную a. По лемме о перпендикулярности двух прямых к третьей, получим, что прямая a1 перпендикулярна прямым p и q. Поэтому по доказанному в первом случае a1 перпендикулярна плоскости α.

Урок 9. Признак перпендикулярности прямой и плоскости

(Рис. 3)

По теореме о параллельных прямых, перпендикулярных плоскости a перпендикулярна к плоскости α.

Теорема доказана.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Докажем, что прямые CA1 и BD, проходящие через вершины куба ABCDA1B1C1D1, перпендикулярны (рис. 4).

Урок 9. Признак перпендикулярности прямой и плоскости

(Рис. 4)

Рассмотрим плоскость ACC1 и прямую BD. Так как прямая BD перпендикулярна прямым AA1 и AC, то по признаку перпендикулярности прямой и плоскости, прямая BD перпендикулярна ACC1.

Следовательно, прямая BD перпендикулярна любой прямой в ACC1. В частности, прямая BD перпендикулярна прямой CA1. Что и требовалось доказать.

Тестовый вопрос №5. Верно ли, что если прямая перпендикулярна каким-нибудь двум прямым плоскости, то она перпендикулярна этой плоскости?

Решение. Воспользуемся признаком перпендикулярности прямой и плоскости: если прямая перпендикулярная к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости. В нем сказано, что прямые в плоскости должны пересекаться. В условии подобного не сказано, поэтому утверждение неверно.

Ответ: неверно.

Тестовый вопрос №7. Треугольник АВС – равносторонний, CD – медиана, MD перпендикулярно плоскости ABC. AB = 2√3, MD = 4. Найти MC.

Решение. Рассмотрим треугольник ABC. Он равносторонний. Это означает, что его медиана так же является высотой и биссектрисой. Рассмотрим треугольник ADC. Он прямоугольный, т.к. DC медиана и высота. Сторона AD равна √3. По теореме Пифагора вычислим длину стороны DC: Урок 9. Признак перпендикулярности прямой и плоскости.

Далее рассмотрим треугольник MDC, он прямоугольный, т.к. MD перпендикулярна плоскости ABC. Воспользовавшись теоремой Пифагора, найдем MC: Урок 9. Признак перпендикулярности прямой и плоскости.

Ответ: 5.