18.10.2024 Олимпиада «Сириус» Математика 9 класс – 2 группа (Резервный день)

18.10.2024 Олимпиада Поделиться:

Олимпиада «Сириус» Математика 18.10.2024 – 2 группа

9 класс

Задание 1: В зрительном зале расставили стулья в 20 рядов, по 11 в каждом из них. Стулья пронумерованы: сначала от 1 до 11 в первом ряду, потом от 12 до 22 во втором ряду и так далее. Зрителям выдали билеты на спектакль с указанием номера стула. В перерыве решили сделать 20 рядов по 14 стульев в каждом и пронумеровать: сначала от 1 до 14 в первом ряду, потом от 15 до 28 во втором и так далее; зрители сели согласно указанным в билете номерам. Сколько зрителей теперь оказалось в том же ряду, что первоначально?

Задание 2: На стороне AC треугольника ABC отмечена точка E. Известно, что ∠EBC=25∘, ∠BCA=32∘, ∠BAC=60∘. Точка D на плоскости такова, что AD∥BE. Какое наименьшее значение может принимать величина угла ∠DAB? Ответ выразите в градусах.

Задание 3: Жора задумал три натуральных числа a, b, c. Чему могут равняться a+b, b+c и c+a?
101, 209, 306
206, 305, 404
404, 504, 704
101, 202, 505
301, 302, 607

Задание 4: В турнире по боксу принимают участие 32 человека. Правила турнира таковы, что матч обязательно заканчивается победой одного из участников (т.е. ничьих не бывает). Турнир на выбывание: проигравший в каком‑то поединке участник выбывает и больше не принимает участие в соревнованиях. По окончании турнира выяснилось, что N участников провели на ринге не менее 7 матчей. При каком наибольшем N такое возможно?

Задание 5: Саша и Юра задумали по числу от 1 до 10, после чего Саша заявил: «Неважно, какое число ты задумал, в произведении наших чисел нет цифры 6». Юра ответил: «Тогда сумма наших чисел равна 14». Саша и Юра не ошибаются. Какое число задумал Юра?

Задание 6: Баба Яга готовит зелье. Рецепт подразумевает, что в зелье должны попасть:
не более 5 лягушек (возможно, 0);
чётное число волчьих зубов (возможно, 0);
кратное шести число драконьих чешуек (возможно, 0);
ровно 2025 ингредиентов.
Сколькими способами Баба Яга может приготовить зелье? Порядок добавления ингредиентов неважен.

Задание 7: Длины сторон AB и AD прямоугольника ABCD равны 16 и 27 соответственно. Пусть M середина стороны CD, и пусть K такая точка на плоскости, что A середина отрезка KM. Найдите площадь треугольника KBD.

Задание 8: Простое число p таково, что для любых a и b числа 11a+5b и a+4b или оба делятся на p, или оба не делятся. Чему может быть равно p? Укажите все подходящие варианты. Каждый ответ записывайте в отдельное поле, добавляя их при необходимости.


Решения для Олимпиады по Математике 9 класс Сириус резервный день школьного этапа 2024/25 всероссийской олимпиады школьников ВсОШ 2 группа 18.10.2024 на официальном сайте Сириуса uts.sirius.online.