Конспект урока
Алгебра
7 класс
Урок № 20
Сумма и разность многочленов
Перечень рассматриваемых вопросов:
- Алгебраические выражения.
- Многочлен.
- Сумма и разность многочленов.
- Стандартный вид многочлена.
- Правила раскрытия скобок (заключения в скобки).
Тезаурус.
Числовое выражение – выражение, состоящее из чисел, знаков математических действий и скобок.
Значение числового выражения – результат выполненных арифметических действий в числовом выражении.
Одночлен – алгебраическое выражение, являющееся произведением букв и чисел
Множители одночлена – буквы и числа, входящие в состав одночлена.
Нулевой одночлен – одночлен, среди множителей которого есть число ноль.
Стандартным видом одночлена называют такой его вид, в котором он представлен произведением числового множителя и натуральных степеней разных переменных.
Числовой множитель одночлена, записанного в стандартном виде, называется коэффициентом одночлена.
Подобные одночлены – одночлены, которые состоят из произведения одних и тех же степеней, но с разными или одинаковыми коэффициентами (числовыми множителями).
Многочлен – сумма одночленов.
Каждый одночлен, являющийся слагаемым многочлена, называют членом многочлена.
Многочлен стандартного вида – это многочлен, все члены которого являются одночленами стандартного вида, среди которых нет подобных членов.
Разность двух многочленов равна многочлену, членами которого являются: все члены уменьшаемого и, взятые с противоположными знаками, все члены вычитаемого. Сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
Основная литература:
1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
Дополнительная литература:
1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.
Теоретический материал для самостоятельного изучения.
Перед нами следующее выражение 123+5 и 45-89. Можем ли между ними поставить знаки «+» или «–» и, соответственно, найти значение полученного выражения?
Конечно, да.
123 + 5 и 45 – 89
(123 + 5) + (45 – 89) = 84
(123 + 5) – (45 – 89) = 172
Оказывается, аналогичные арифметические операции можно выполнять и с многочленами, т.е. найти сумму и разность многочленов.
Посмотрим, как можно выполнить данные действия с многочленами.
Найдём многочлен равный сумме многочленов. Как это сделать?
Оказывается, сумма многочленов равна многочлену, членами которого являются все члены данных многочленов.
Например, сумма многочленов (а + с) и (k + х) равна многочлену (а + с) + (k + х) или а + с + k + х. Последний переход от левой части к правой называют раскрытием скобок.
Найдём многочлен равный разности многочленов. Как это сделать?
Оказывается, разность двух многочленов равна многочлену, членами которого являются все члены уменьшаемого и, взятые с противоположными знаками, все члены вычитаемого.
Например, разность двух многочленов а + с и k + х равна многочлену (а + с) – (k + х) или а + с – k – х. Последний переход от левой части к правой, так же как и при нахождении суммы, называют раскрытием скобок.
Рассмотрим правила раскрытия скобок.
Если перед скобками стоит знак плюс, то скобки можно опустить, не меняя знаки слагаемых, заключённых в скобки.
Например:
(а + с) + (х – у) = а + с + х – у
Если перед скобками стоит знак минус, то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки, на противоположный.
Например:
(а + с) + (х – у) = а + с – х + у
Стоит обратить внимание, что если перед скобками нет никакого знака, то подразумевается, что стоит знак плюс.
Например,
(d + k) – (m + n) = d + k – m –n
Обратный переход от правой части к левой в похожих выражениях называют заключением в скобки.
Рассмотрим правило заключения в скобки:
Чтобы заключить многочлен в скобки со знаком плюс перед ними, надо записать в скобки все его члены с теми же знаками.
Например:
а – с – k – х = (а – с) + (-k – х)
А чтобы заключить многочлен в скобки со знаком минус перед ними, надо записать в скобки все его члены с противоположными знаками.
Например:
а – с – k – х = (а – с) – (k + х)
Рассмотрим, как использовать эти правила для преобразования многочлена в стандартный вид. Пример:
Преобразуем разность многочленов в многочлен стандартного вида
( 5а– 4х + 15) – (10а + 13х – 14) = 5а- 4х + 15 – 10а – 13х + 14 = -5а – 17х + 29
Для выполнения задания, сначала будем использовать правило раскрытия скобок при нахождении разности многочленов. А затем приведём полученный многочлен к стандартному виду.
Итак, сегодня мы получили представление о том, как найти сумму и разность многочленов и, используя правило раскрытия скобок, приводить многочлен к стандартному виду.
Задание на сумму и разность многочленов.
Выполним следующее задание по теме: «Сумма и разность многочленов».
Запишите такой многочлен, чтобы его сумма с многочленом 3х + 1 была равна 9х – 4.
Решение:
Данное задание можно выполнить следующим образом.
Назовем неизвестный многочлен у, тогда можно составить следующее выражение, исходя из условия.
у + (3х + 1) = 9х -4
Найдём отсюда у
у = (9х – 4) – (3х + 1)
Раскроем скобки по правилу раскрытия скобок.
у = 9х – 4 – 3х + 1
Приведём многочлен к стандартному виду.
у = 6х – 3
Это и есть тот многочлен, который удовлетворяет условию задания.
Разбор заданий тренировочного модуля.
1. Приведите многочлен к стандартному виду (аt2 – 5t2) – (10хt – 4t2) + (5хt + 11аtt).
Решение: Для решения задания, вспомним правила раскрытия скобок, перед которыми стоит знак «+» или «–». Если знак «+», то скобки можно опустить, не меняя знак, а если перед скобкой знак «–», то скобки можно опустить, меняя знак каждого слагаемого в скобках. Далее приведём к стандартному виду полученный многочлен, выделив в нём подобные члены.
(аt2 – 5t2) – (10хt – 4t2) + (5хt + 11аtt) = аt2 – 5t2 – 10хt + 4t2 + 5хt +11аt2 = 12аt2 – t2 – 5хt.
Ответ: 12аt2 – t2 – 5хt
2. Представьте выражение каким-либо способом в виде разности двучлена и трехчлена:
3×4 – 12×3 – 3×2 + 5x – 14
Варианты ответов:
- (3×4 – 12×3 – 3×2) + (5x – 14)
- (3×4 – 12×3) – (3×2 + 5x – 14)
- (3×4 – 12×3) – (3×2 – 5x + 14)
Решение:
При выполнении задания можно сначала проанализировать ответы. По условию выражение должно быть составлено в виде разности двучлена и трехчлена. Поэтому первый ответ не подходит, т. к. в нём представлена сумма.
Ответы два и три очень похожи. Для нахождения верного ответа, заключим в скобки исходное выражение, как в ответах 2 и 3. Т. к. мы найдем разность, то по правилу заключения в скобки со знаком минус перед ними, надо записать в скобки все его члены с противоположными знаками. Поэтому правильный ответ №3.
3×4 – 12×3 – 3×2 + 5x – 14 = (3×4 – 12×3) – (3×2 – 5x + 14)
Ответ: (3×4 – 12×3) – (3×2 – 5x + 14).