Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №40. Преобразование тригонометрических выражений.
Перечень вопросов, рассматриваемых в теме
- различные приёмы преобразования тригонометрических выражений.
- различные тригонометрические формулами и их использование при преобразовании тригонометрических выражений.
Глоссарий по теме
Преобразование тригонометрических выражений – это упрощение выражений, которое выполняется с помощью тригонометрических формул.
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл.– М.: Просвещение, 2014.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
- Преобразование тригонометрических выражений – это их упрощение, которое выполняется с помощью тригонометрических формул.
Вот некоторые правила, которые помогут нам преобразовывать тригонометрические выражения.
- Если в тригонометрических выражениях разные меры угла, то их следует привести к единой, применяя правила:
1))
Например:
2)
Например: .
- Если синусы, косинусы, тангенсы и котангенсы содержат разные аргументы, (углы),стараемся привести к одному аргументу (углу).
Например, с помощью формул двойного аргумента(угла) заменяем на по формуле .
- Если в тригонометрическом выражении необходимо поменять синус на косинус, тангенс на котангенс, то применяем формулы приведения.
Например: , так как , синус меняется на косинус.
, так как , тангенс меняется на котангенс, угол в четвёртой четверти, здесь тангенс отрицательный.
- Если тригонометрические выражения содержат большое количество тригонометрических функций, то необходимо привести к минимальному количеству видов функций. Для этого используем формулы приведения, основное тригонометрическое тождество или другие формулы.
Например:
вычислить .
Заметим, что , , .
Тогда данное выражение примет вид: ;
в скобках формула косинуса двойного угла, т.е. , значит
- Если в тригонометрическом выражении нужно понизить степень входящих в него компонентов, применяем формулу понижения степени или формулу половинного аргумента. Только помните: степень понижается, аргумент удваивается.
, , ,
Данная группа формул позволяет перейти от любого тригонометрического выражения к рациональному.
Например: упростите выражение .
Применяем формулу понижения степени для косинуса и получаем:
.
Чтобы определить рациональность значения тригонометрического выражения, мы должны знать, что из всех углов, содержащих рациональное число, лишь углы вида ; ; , где k целое число, имеют рациональный косинус.
Например, число рациональное, так как .
Углы вида ; ; , где k целое число, имеют рациональный синус.
Углы вида ; , где k целое число, имеют рациональный тангенс.
Примеры и разбор решения заданий тренировочного модуля:
Рассмотрим примеры преобразований тригонометрических выражений.
Пример 1.Вычислите: .
Заметим, что в знаменателе данной дроби у синусов разные углы и . Используем формулу приведения: и тогда наше выражение примет вид: , в знаменателе тригонометрическое тождество, равное 1. Нам осталось 24 разделить на 1, получаем 24.
Пример 2. Найдите , если .
Так как , то разделив числитель и знаменатель данной дроби на . Получаем:
, сократим и заменим на.
, по условию =3, подставим это число в наше выражение: .