Урок 3. Простые и составные числа. Разложение натурального числа на множители

Поделиться:
Конспект урока

Алгебра

7 класс

Урок № 3

Простые и составные числа. Разложение натурального числа на множители

Перечень рассматриваемых вопросов:

  • Определения простого и составного числа, примеры простых и составных чисел.
  • Разложение числа на простые множители.
  • Таблица простых чисел.

Тезаурус:

Делителем натурального числа n называют натуральное число, на которое n делится без остатка

Натуральное число называют простым, если оно имеет ровно два делителя: единицу и само это число.

Натуральное число называют составным, если оно имеет более двух делителей.

Основная теорема арифметики.

Любое натуральное число, большее единицы, можно разложить на произведение простых чисел, причём это разложение единственно с точностью до порядка следования сомножителей.

Теорема 1.

Каждое отличное от единицы натуральное число имеет делитель – простое число.

Теорема 2. (теорема Евклида)

Простых чисел бесконечно много.

Разложить натуральное число на простые множители – значит представить его в виде произведения простых чисел.

Основная литература:

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

Дополнительная литература:

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

На уроке будем формулировать определения, конструировать несложные определения самостоятельно. Сформулируем определения простого и составного числа, приведём примеры простых и составных чисел. Выполним разложение числа на простые множители. Выясним, является ли число составным. Будем использовать таблицу простых чисел.

Натуральные числа, имеющие только два делителя, называют простыми.

Пример:

числа 2; 3; 5; 7; 11 – простые, т. к. делятся только на 1 и сами на себя, т. е. имеют ровно два делителя.

Натуральные числа, имеющие более двух делителей, называют составными.

Пример:

числа 4; 6; 8; 10 – составные, т. к. делятся не только на 1 и сами на себя, а ещё, например, на 2, т. е. имеют более двух делителей.

Число 1 не относится ни к простым, ни к составным числам.

Представление числа в виде произведения степеней простых чисел называют разложением числа на простые множители.

Простых чисел бесконечно много.

Основная теорема арифметики.

Любое натуральное число (кроме 1) либо является простым, либо его можно разложить на простые множители, причём единственным способом.

Рассмотрим, как раскладывать составные числа на простые множители.

Число 57 – составное, т. к. кроме 1 и 57 оно делится, например, ещё на 3.

Покажем это.

Согласно признаку делимости на 3, сумма цифр должна делиться на 3. Проверяем:

5 + 7 = 12,

12 : 3 = 4.

Число 57 можно представить в виде произведения простых чисел.

При разложении числа на простые множители используют признаки делимости и применяют запись столбиком, при которой делитель располагают справа от вертикальной черты, а частное записывают под делимым.

Урок 3. Простые и составные числа. Разложение натурального числа на множители

Получаем:

57 = 3 · 12.

Рассмотрим разложение еще одного составного числа на простые множители.

120.

120 – чётное число, значит, делится на 2.

120 : 2 = 60.

60 – чётное число

60 : 2 = 30.

30 – чётное число.

30 : 2 = 15.

15 – нечётное число,

Следовательно, не делится на 2,

но делится на 3.

15 : 3 = 5.

5 – простое число.

Получаем:

120 = 2 · 2 · 2 · 3 · 5 = 23 · 3 · 5.

При выполнении задания по определению простых и составных чисел удобно использовать таблицу простых чисел.

Урок 3. Простые и составные числа. Разложение натурального числа на множители

Выясним, является ли число 337 простым или составным.

Будем считать, что каждое простое число уже разложено на множители.

Например, простое число 13 равно произведению само числа 13 и единицы.

13 = 13 · 1.

Рассмотрим задачу.

Определите самое маленькое натуральное число, которое не имеет простых делителей кроме 2 и 3.

Решение.

Не имеет простых делителей кроме 2 и 3 – это означает, что в разложении может быть 2 в любой степени и 3 любой степени.

Самое маленькое натуральное число, не является ни простым не сложным.

2, 3, 5 – натуральные числа, они есть в таблице простых чисел.

4 – составное число, которое делится на 2, но не делится на 3. Нам не подходит.

6 – составное число, которое делится на 2 и на 3. Оно удовлетворяет нашему условию.

Ответ: 6.

Итак, мы с вами узнали, какие числа называют простыми и составными.

Узнали основную теорему арифметики.

Узнали, как разложить натуральное число на простые множители.

Углубим наши знания.

Делимость на 3.

Докажем, что одно из трёх последовательных чётных чисел делится на 3

Доказательство.

Чётные числа должны делиться на 2.

Предположим противное не делиться на 3.

Тогда получаем:

первое чётное число представим в виде:

2 · 3n + 2,

тогда второе чётное число представим в виде:

2 · 3n + 4

а третье чётное число представим в виде:

2 · 3n + 6

Видим первое и второе не делятся на 3, а третье делится, так как

(2 · 3n) делится на 3 и 6 делится на 3, значит и сумма 2 · 3n + 6.

Делится на 3, по свойствам делимости.

Значит, предположение неверно и из трёх последовательных чётных чисел одно обязательно будет делиться на 3.

Разбор заданий тренировочного модуля.

1. Выберите правильный ответ.

Сколько чисел в ряду от 1 до 100 одновременно не делятся ни на 2, ни на 7?

Варианты ответа:

40

43

57

67

Решение.

Для решения задачи нужно вспомнить признаки делимости на 2.

Если число оканчивается одной из цифр 0, 2, 4, 6, 8, то оно делится на 2.

То есть делятся на 2 чётные числа. Таких чисел в ряду от 1 до 100 50 штук.

Значит, из 100 вычитаем 50 чётных чисел, которые нам не подходят.

Далее рассматриваем в ряду числа от 1 до 100, которые делятся на 7 и являются нечётными. Это: 7, 21, 35, 49, 63, 77, 91. Всего их 7 штук. Вычтем их из 50 и получим 43.

Ответ: 43.

2. Впишите правильный ответ.

Определите, какую цифру, являющуюся простым числом, нужно подставить вместо звёздочки, чтобы число f делилось на число k без остатка, если:

f = 3 ⋅ 2 ⋅ 2 ⋅ 5

и

k = 3 * 5.

Решение.

Для того чтобы одно число делилось без остатка на другое, необходимо, чтобы они имели в разложении общие множители. Чтобы число k делилось без остатка на f , необходимо, чтобы оно было меньше f и содержало только делители f. Значит, нам подходит только 2.

Ответ: 2.