Библиотека

Библиотека конспектов — это место, где можно найти и прочитать конспекты на разные темы и по разным предметам. Здесь есть конспекты по математике, физике, химии, биологии, информатике, истории, обществознанию, литературе и другим предметам.

В библиотеке есть удобный поиск, где можно искать конспекты по ключевым словам или темам, а также сортировать их по популярности или дате добавления. Библиотека постоянно пополняется новыми конспектами и пользователи могут добавлять свои конспекты.

Список материалов:

Урок 5. Словообразование и орфография. Морфемный и словообразовательный разборы

КонспектМорфемика — раздел языкознания, в котором изучается система морфем языка и морфемная структура слов и их форм.Морфема – это минимальная значимая часть слова (корень, приставка, суффикс, окончание).Морфемы делятся на словообразующие…

Урок 3. Лексика и фразеология

КонспектКлючевые слова: Синонимы, антонимы, омонимы, прямое и переносное значение слова, однозначные и многозначные слова, фразеологизмы.Основные понятия:Синонимы – это разные слова одной части речи, имеющие сходное значение. Примеры: договор — соглашение.…

Урок 2. Синтаксический и пунктуационный разбор

Ключевые слова: Синтаксис, словосочетание, предложение, простое предложение, сложное предложение, синтаксический разбор.Основные понятия:o Словосочетание – это сочетание двух и более знаменательных слов.o Словосочетание состоит из главного и зависимого слов.o Предложения в…

Урок 1. Русский язык как развивающееся явление

Ключевые слова: Язык как развивающаяся система; разделы лингвистики: фонетика, орфоэпия, лексикология, фразеология, морфемика, словообразование, морфология, синтаксис, орфография, пунктуация; общеславянский язык, южнославянские языки, западнославянские языки, восточнославянские языки; неологизмы, устаревшие слова.Основные понятия:o…

Урок 51. Повторение по курсу

Определение Функция – зависимость одной переменной от другой, причем для любых значений х соответствует единственное значение функции y. График функции – множество всех точек координатной плоскости, абсциссы которых равны значениям…

Урок 50. Повторительно-обобщающий урок по теме «Элементы комбинаторики и теории вероятностей»

Конспект В науке и практике часто встречаются задачи, решая которые мы описываем реальные процессы составляя математическую модель. Такие типы задач мы рассмотрели в этой главе. Повторим их для подготовки к контрольному заданию. Задача 1. Перебор возможных вариантов Из четырёх цифр 1, 2, 3, 4 составить…

Урок 49. Умножение вероятностей

Мы уже знаем, как найти вероятность зависимых событий, то есть несовместных или противоположных. Рассмотрим, как можно вычислить вероятность события, состоящего в совместном появлении двух независимых событий.Два события называются независимым, если…

Урок 48. Сложение вероятностей

Прежде, чем говорить о сложении вероятностей, напомним необходимые понятия. Исходы в определенном опыте или наблюдении считают равновозможными, если шансы этих исходов одинаковы. Например: при бросании игрального кубика существует шесть равновозможных…

Урок 47. Достоверные и невозможные события

Конспект В математике, в окружающей нас жизненной практике мы наблюдаем различные события. Одни события наступают всегда, другие не могут наступить никогда. Событие, которое при проведении некоторого опыта происходит всегда, называют достоверным событием. Например, при бросании кубика выпадет менее 7 очков. Событие, которое не может произойти…

Урок 46. Вероятность равновозможных событий

Конспект Подбрасывание монеты для определения вероятности выпадения орла или решки, или бросание игрального кубика для определения выпавшего числа, всё это яркие примеры наступления вероятности некоторого случайного события. Исходы при которых наступает ожидаемое событие называют благоприятными исходами для данного события. При бросании игрального кубика, с очками…

Урок 45. Относительная частота случайного события

В повседневной жизни, в практической и научной деятельности проводят наблюдения и эксперименты за различными случайными событиями, которые могут произойти или не произойти. Например, поражение мишени при выстреле, выигрыш спортивной команды…

Урок 44. Сочетания

Конспект Сочетанием из n элементов по k (k ≤ n) называется любое множество, состоящее из k элементов, взятых в любом порядке из данных n элементов. Число сочетаний из n элементов по k обозначают так: . Чтобы вычислить число сочетаний нужно воспользоваться формулой: Запомните, при сочетаниях порядок следования элементов не важен.…

Урок 42. Перестановки

Конспект Перестановкой из n элементов называется каждое расположение этих элементов в определённом порядке. Количество перестановок из n элементов обозначают так: Pn. Чтобы вычислить количество перестановок нужно воспользоваться формулой: Pn = 1 • 2 • 3 • … • (n – 1) • n. Произведение всех натуральных чисел от 1 до n называется факториалом и обозначается так: n! Принято считать, что 0! = 1.…

Урок 41. Примеры комбинаторных задач

Конспект Комбинаторные задачи – это задачи, в которых необходимо составить комбинации каких-либо элементов из заданного набора по определённым условиям и (или) подсчитать количество получившихся комбинаций. Комбинаторика – раздел математики, который занимается решением комбинаторных задач. При решении комбинаторных задач можно воспользоваться: • методом перебора; •…

Урок 40. Повторительно-обобщающий урок по теме «Геометрическая прогрессия»

Напомним, что геометрической прогрессией называется последовательность ненулевых чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.…

Урок 39. Метод математической индукции

Мы научились находить сумму большого количества чисел, кратных, например, числу 7. Мы научились находить сумму большого количества слагаемых – степеней числа 2. А чему равна сумма квадратов первых трёхсот натуральных…

Урок 38. Формула суммы первых n членов геометрической прогрессии

Напомним, что геометрической прогрессией называется последовательность ненулевых чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.…

Урок 37. Свойство геометрической прогрессии

Напомним, что геометрической прогрессией называется последовательность ненулевых чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии.Из…

Урок 36. Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии

Рассмотрим последовательность. Заметим, что каждый член, начиная со второго, получается из предыдущего умножением на 0,5.Рассмотрим последовательность, в которой первый член равен единице, а каждый следующий получается из умножением на -7.Мы…

Урок 35. Повторительно-обобщающий урок по теме «Арифметическая прогрессия»

Вспомним основные сведения об арифметической прогрессии. Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d. Число d называют…

Урок 34. Формула суммы первых n членов арифметической прогрессии

Напомним, что арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом d. Число d называют разностью арифметической прогрессии.Зная первый…

Урок 33. Характеристическое свойство арифметической прогрессии

Конспект Напомним, что арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом. (an) – арифметическая прогрессия, если для любого натурального n an + 1 = an + d, где d – некоторое число. Из определения арифметической прогрессии следует, что разность…

Урок 32. Определение арифметической прогрессии. Формула n-го члена арифметической прогрессии

Рассмотрим последовательность. -19,2; -17,4; -15,6; -13,8;… Заметим, что каждый член, начиная со второго, получается из предыдущего прибавлением числа 1,8 .Рассмотрим последовательность, в которой первый член равен 5, а каждый следующий…

Урок 31. Последовательности

Рассмотрим последовательность. -19,2; -17,4; -15,6; -13,8;… Заметим, что каждый член, начиная со второго, получается из предыдущего прибавлением числа 1,8.Рассмотрим последовательность, в которой первый член равен 5, а каждый следующий получается…

Урок 30. Повторительно-обобщающий урок по теме «Уравнения и неравенства с двумя переменными»

Вспомним, что решением уравнением с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.Чтобы решить уравнение с двумя переменными пользуются графическим методом, то есть строят график уравнения.…

Урок 29. Некоторые приёмы решения систем уравнений второй степени с двумя переменными

Конспект Рассмотрим систему уравнений: Преобразуем сначала второе уравнение системы, а точнее многочлен, который стоит в левой части уравнения: Сгруппируем выделенные слагаемые: Из первой группы вынесем за скобки общий множитель, а саму скобку представим как выражение во второй степени, используя…

Урок 28. Системы неравенств с двумя переменными

Рассмотрим систему неравенств с двумя переменными.y – x>5,x2 – 1>yПара чисел 6 и 12 являются решением данной системы, так как при подстановке этих значений вместо переменных получаются верные числовые неравенства.Сделаем…

Урок 27. Неравенства с двумя переменными

Рассмотрим неравенство. 3x2 – y<0При значениях переменной икс равен 1, а игрик равен пяти, оно обращается в верное исловое неравенство.Говорят, что пара чисел 1 и 5 являются решением этого неравенстваРассмотрим…